在成功定义Category.Constrained实例之后,我尝试定义Functor.Constrained实例。但是,Functor.Constrained fmap的类型很复杂,我的尝试导致了我无法解释的错误。如何定义fmap类型所需的所有对象?
Control.Functor.Constrained
fmap :: (Object r a, Object t (f a), Object r b, Object t (f b)) => r a b -> t (f a) (f b)
http://hackage.haskell.org/package/constrained-categories-0.3.1.1
{-# LANGUAGE GADTs, TypeFamilies, ConstraintKinds #-}
module Question1 where
import Control.Category.Constrained
import Control.Functor.Constrained as FC
import Data.Map as M
import Data.Set as S
data RelationMS a b where
IdRMS :: RelationMS a a
RMS :: Map a (Set b) -> RelationMS a b
instance Category RelationMS where
type Object RelationMS o = Ord o
id = IdRMS
(.) = compRMS
compRMS :: (Ord a, Ord k, Ord b) => RelationMS k b -> RelationMS a k -> RelationMS a b
RMS mp2 `compRMS` RMS mp1
| M.null mp2 || M.null mp1 = RMS M.empty
| otherwise = RMS $ M.foldrWithKey
(\k s acc -> M.insert k (S.foldr (\x acc2 -> case M.lookup x mp2 of
Nothing -> acc2
Just s2 -> S.union s2 acc2
) S.empty s
) acc
) M.empty mp1
pseudoFmap :: Ord c => (b -> c) -> RelationMS a b -> RelationMS a c
pseudoFmap f (RMS r) = RMS $ M.map (S.map f) r
instance FC.Functor RelationMS where
-- error: ‘Object’ is not a (visible) associated type of class ‘Functor’
type Object RelationMS o = Ord o
fmap f (RMS r) = pseudoFmap f (RMS r)
答案 0 :(得分:2)
{-# LANGUAGE GADTs, TypeFamilies, ConstraintKinds, FlexibleInstances
, MultiParamTypeClasses, StandaloneDeriving #-}
module Question1 where
import Prelude hiding (($))
import Control.Category.Constrained
import Control.Functor.Constrained as FC
import Control.Arrow.Constrained (($))
import Data.Map as M
import Data.Set as S
import Data.Constraint.Trivial
main :: IO ()
main = print $ FC.fmap f
$ RMS (M.fromList [(1,S.fromList [11,21]),(2,S.fromList [31,41])])
where f :: ConstrainedCategory (->) Ord Int Int
f = constrained (+1)
data RelationMS a b where
IdRMS :: RelationMS a a
RMS :: Map a (Set b) -> RelationMS a b
deriving instance (Show a, Show b) => Show (RelationMS a b)
instance Category RelationMS where
type Object RelationMS o = Ord o
id = IdRMS
(.) = compRMS
compRMS :: (Ord a, Ord k, Ord b) => RelationMS k b -> RelationMS a k -> RelationMS a b
RMS mp2 `compRMS` RMS mp1
| M.null mp2 || M.null mp1 = RMS M.empty
| otherwise = RMS $ M.foldrWithKey
(\k s acc -> M.insert k (S.foldr (\x acc2 -> case M.lookup x mp2 of
Nothing -> acc2
Just s2 -> S.union s2 acc2
) S.empty s
) acc
) M.empty mp1
pseudoFmap :: Ord c => (b -> c) -> RelationMS a b -> RelationMS a c
pseudoFmap f (RMS r) = RMS $ M.map (S.map f) r
instance FC.Functor (RelationMS a)
(ConstrainedCategory (->) Ord)
(ConstrainedCategory (->) Unconstrained) where
fmap (ConstrainedMorphism f) = ConstrainedMorphism $
\(RMS r) -> pseudoFmap f (RMS r)
RMS (fromList [(1,fromList [12,22]),(2,fromList [32,42])])
顺便说一句,您可以通过语法扩展使这些地图和集合的定义更易于键入/阅读:
{-# LANGUAGE OverloadedLists #-}
main :: IO ()
main = print $ FC.fmap f $ RMS [(1, [11,21]),(2, [31,41])]
where f :: ConstrainedCategory (->) Ord Int Int
f = constrained (+1)
谈论语法糖:使用constrained-categories>=0.4
,您还可以缩短类型签名
{-# LANGUAGE TypeOperators #-}
main = print $ FC.fmap f
$ RMS (M.fromList [(1,S.fromList [11,21]),(2,S.fromList [31,41])])
where f :: (Ord⊢(->)) Int Int
f = constrained (+1)
甚至完全省略它,而在constrained
上用type application指定约束:
{-# LANGUAGE TypeApplications, OverloadedLists #-}
main :: IO ()
main = print $ FC.fmap (constrained @Ord (+1))
$ RMS ([(1,[11,21]),(2,[31,41])])
此外,现在看起来类似Hask
的名字也有ConstrainedCategory (->) Unconstrained
的同义词,因此您可以将实例头简化为
instance FC.Functor (RelationMS a) (ConstrainedCategory (->) Ord) Hask
答案 1 :(得分:1)
您可能并不打算将RelationMS
设为Functor
(可以将其设为1,但不能使用constrained-categories
)。您的意思是将RelationMS a
的{{1}}设为Functor
;您想要a
。另外,在两个Functor (RelationMS a)
之间存在Functor
,因此您必须定义Category
是Category
之间的RelationMS a
。源类别为Functor
,输出类别为ConstrainedCategory (->) Ord
。但是,由于资金缺口冲突,有一个“默认” (->)
实例使instance Prelude.Functor f => FC.Functor f (->) (->)
停止工作。定义此instance FC.Functor (RelationMS a) (ConstrainedCategory (->) Ord) (->)
newtype
这是newtype Fun a b = Fun { runFun :: a -> b }
instance Category Fun where
id = Fun Prelude.id
Fun f . Fun g = Fun (f Prelude.. g)
的超类中的两个,而第三个是Functor
。所以,你得到
Object Fun o = ()