无法获得出色的Julia Turing模型

时间:2019-05-29 23:10:47

标签: julia

我尝试从PYMC3 and Stan comparison复制模型。但是它似乎运行缓慢,当我查看@code_warntype时,我认为有些东西– KN –编译器似乎将其称为Any

我尝试添加类型-尽管无法将类型添加到turing_model的参数中,并且turing_model中的事情很复杂,因为它使用的是autodiff变量,而不是通常的变量。我将所有代码放入函数do_it中以避免使用全局变量,因为它们说全局变量会使速度变慢。 (不过,实际上似乎较慢。)

有关导致问题的原因的任何建议? turing_model代码正在迭代,因此应该发挥最大作用。

using Turing, StatsPlots, Random

sigmoid(x) = 1.0 / (1.0 + exp(-x))

function scale(w0::Float64, w1::Array{Float64,1})
    scale = √(w0^2 + sum(w1 .^ 2))
    return w0 / scale, w1 ./ scale
end

function do_it(iterations::Int64)::Chains
    K = 10                         # predictor dimension
    N = 1000                       # number of data samples

    X = rand(N, K)                 # predictors    (1000, 10)

    w1 = rand(K)                   # weights       (10,)
    w0 = -median(X * w1)           # 50% of elements for each class (number)
    w0, w1 = scale(w0, w1)         # unit length (euclidean)
    w_true = [w0, w1...]

    y = (w0 .+ (X * w1)) .> 0.0    # labels
    y = [Float64(x) for x in y]

    σ = 5.0
    σm = [x == y ? σ : 0.0 for x in 1:K, y in 1:K]

    @model turing_model(X, y, σ, σm) = begin

        w0_pred ~ Normal(0.0, σ)
        w1_pred ~ MvNormal(σm)

        p = sigmoid.(w0_pred .+ (X * w1_pred))

        @inbounds for n in 1:length(y)
            y[n] ~ Bernoulli(p[n])
        end
    end

    @time chain = sample(turing_model(X, y, σ, σm), NUTS(iterations, 200, 0.65));

    # ϵ = 0.5
    # τ = 10

    # @time chain = sample(turing_model(X, y, σ), HMC(iterations, ϵ, τ));

    return (w_true=w_true, chains=chain::Chains)
end

chain = do_it(1000)

0 个答案:

没有答案