我只是从Tensorflow.js开始,正在尝试构建一个简单的模型,将28 x 28的数组作为输入(每个数组代表一张图片)。但是,某些连接并没有完全正确。运行下面的代码片段,我得到:
errors.ts:48 Uncaught (in promise) Error: Error when checking target: expected dense_Dense1 to have 2 dimension(s). but got array with shape 100,28,28
at new e (errors.ts:48)
at Od (training.ts:147)
at e.standardizeUserData (training.ts:1133)
at training_tensors.ts:427
at common.ts:14
at Object.next (common.ts:14)
at common.ts:14
at new Promise (<anonymous>)
at op (common.ts:14)
at kd (training_tensors.ts:408)
这是代码本身:
// build the model
var input = tf.input({shape: [28,28]})
var h1 = tf.layers.reshape({targetShape: [28*28]}).apply(input)
var h2 = tf.layers.dense({units: 100}).apply(h1)
var model = tf.model({inputs: input, outputs: h2})
model.compile({optimizer: 'sgd', loss: 'meanSquaredError', lr: 0.0001})
model.summary();
// get training data and train
var trainX = tf.ones([100,28,28]);
model.fit(trainX, trainX, {
batchSize: 10,
epochs: 1,
})
<script src='https://cdnjs.cloudflare.com/ajax/libs/tensorflow/1.1.2/tf.min.js'></script>
让我感到困惑的是model.summary()
调用返回:
_________________________________________________________________
layer_utils.ts:152 Layer (type) Output shape Param #
layer_utils.ts:64 =================================================================
layer_utils.ts:152 input1 (InputLayer) [null,28,28] 0
layer_utils.ts:74 _________________________________________________________________
layer_utils.ts:152 reshape_Reshape1 (Reshape) [null,784] 0
layer_utils.ts:74 _________________________________________________________________
layer_utils.ts:152 dense_Dense1 (Dense) [null,100] 78500
layer_utils.ts:74 =================================================================
layer_utils.ts:83 Total params: 78500
layer_utils.ts:84 Trainable params: 78500
layer_utils.ts:85 Non-trainable params: 0
layer_utils.ts:86 _________________________________________________________________
这表明重塑层应将具有形状(批处理784)的数组传递到致密层,但错误表明不是这样。
有人知道我在做什么错吗?任何建议都将受到欢迎!
答案 0 :(得分:0)
我的输入具有形状(批号28、28),而模型输出具有形状(批号100)。但是,我要求模型在给定输入trainX
(分别为trainX
的第二个和第一个参数)的情况下预测model.fit
。
要解决此问题,我只需要将要预测的值的形状更新为(批量,100):
// build the model
var input = tf.input({shape: [28,28]})
var h1 = tf.layers.reshape({targetShape: [28*28]}).apply(input)
var h2 = tf.layers.dense({units: 17}).apply(h1)
var model = tf.model({inputs: input, outputs: h2})
model.compile({optimizer: 'sgd', loss: 'meanSquaredError', lr: 0.0001})
model.summary();
// get training data and train
var trainX = tf.ones([100,28,28]),
trainY = tf.ones([100, 17])
model.fit(trainX, trainY, {
batchSize: 10,
epochs: 1,
}).then(function() {
console.log( model.predict(trainX).dataSync() )
})