(我只是在节点上启动tensorflow.js)
我一直在网上寻找答案。
混乱
我有来自tooltips: {
mode: 'index',
intersect: false,
callbacks: {
//returns a empty string if the label is "No Data"
label: function(items, data){
let dataset = data.datasets[items.datasetIndex];
if(dataset.label !== "No Data") {
return `${dataset.label}: ${items.yLabel}`
} else {
return ""
}
},
//only returns something when at least one dataset yLabel is a valid number.
title: function(t, e) {
let shouldDisplay = false;
t.forEach((it) => {
if(!isNaN(it.yLabel)) shouldDisplay = true;
});
if(shouldDisplay) {
return t[0].xLabel;
}
}
}
},
的图像数据,并尝试将其与其他图像数据一起输入到image1 = tf.fromPixels(img)
。不管我是如何将xs = tf.tensor([image1, image2])
的一堆图像输入到xs
的,程序都会输出如下所述的错误。
我已经尝试过的东西
运行程序时,出现错误model.fit
我知道我没有正确输入xs。我在线上阅读了一些文章,这些文章与您需要如何以Error: Error when checking input: expected conv2d_Conv2D1_input to have 4 dimension(s). but got array with shape 4,1
之类的方式输入数组以及一些图像批处理有关。我看过一些文章,这些文章显示图像需要另外一组图层:
tf.tensor([[0.2, 0.1], [0.2, 0.4]]);
好吧,我尝试将其输入,尝试将它们转换为typedarray格式,并尝试了很多东西。对于为model.add(tf.layers.conv2d({
inputShape: [scaleHeight, scaleWidth, 3],
kernelSize: 5,
filters: 8,
strides: 1,
activation: 'relu',
kernelInitializer: 'VarianceScaling'
}));
model.add(tf.layers.maxPooling2d({
poolSize: [2, 2],
strides: [2, 2]
}));
model.add(tf.layers.conv2d({
kernelSize: 5,
filters: 16,
strides: 1,
activation: 'relu',
kernelInitializer: 'VarianceScaling'
}));
model.add(tf.layers.maxPooling2d({
poolSize: [2, 2],
strides: [2, 2]
}));
model.add(tf.layers.dense({ // Output
units: 2,
kernelInitializer: 'VarianceScaling',
activation: 'softmax'
}));
model.compile({loss: 'categoricalCrossentropy', optimizer: tf.train.sgd(0.1), metrics: ['accuracy']});
由tf.fromPixels(canvas)
转换为张量的多张图像提出一个合适的xs变量,我感到很迷失
代码:
model.fit(xs, ys, {epochs: 100, options....});
在运行它之后,我希望至少记录该模型的损失,但会引发以下错误:
var tf = require('@tensorflow/tfjs');
var cv = require('canvas');
var {Image, createCanvas, ImageData} = cv;
tf.disableDeprecationWarnings();
var scaleWidth = 16;
var scaleHeight = 16;
function getImage(path){
var img = new Image();
return new Promise(function(resolve, reject){
img.onload = function(){
var element = createCanvas(scaleWidth, scaleHeight);
var ctx = element.getContext('2d');
ctx.drawImage(img, 0, 0);
ctx.scale(scaleWidth/img.width, scaleHeight/img.height);
//resolve(Array.from(tf.fromPixels(element).flatten().dataSync()));
resolve(tf.fromPixels(element));
};
img.src = path;
});
}
var log = function(input){console.log(input)};
const model = tf.sequential();
model.add(tf.layers.conv2d({
inputShape: [scaleHeight, scaleWidth, 3],
kernelSize: 5,
filters: 8,
strides: 1,
activation: 'relu',
kernelInitializer: 'VarianceScaling'
}));
model.add(tf.layers.maxPooling2d({
poolSize: [2, 2],
strides: [2, 2]
}));
model.add(tf.layers.conv2d({
kernelSize: 5,
filters: 16,
strides: 1,
activation: 'relu',
kernelInitializer: 'VarianceScaling'
}));
model.add(tf.layers.maxPooling2d({
poolSize: [2, 2],
strides: [2, 2]
}));
model.add(tf.layers.dense({ // Output
units: 2,
kernelInitializer: 'VarianceScaling',
activation: 'softmax'
}));
model.compile({loss: 'categoricalCrossentropy', optimizer: tf.train.sgd(0.1), metrics: ['accuracy']});
(async function(){
var cats = [], bland = [];
cats[0] = await getImage('cats/0.jpeg');
cats[1] = await getImage('cats/1.jpeg');
bland[0] = await getImage('bland/0.png');
bland[1] = await getImage('bland/1.png');
var testCats = await getImage('c.jpeg');
var testBland = await getImage('b.jpeg');
var xs = tf.tensor([cats[0], cats[1], bland[0], bland[1]]); // confusion occurs here
for(var c = 0; c < 10; c++){
var result = await model.fit(xs, tf.tensor([[0, 1], [0, 1], [1, 0], [1, 0]]), {epochs: 100});
console.log(result.history.loss[0]);
}
})();
答案 0 :(得分:1)
查看代码,传入模型的数据的形状与模型第一层inputShape的形状不同。
如何解决问题?
{ print }
与inputShape比较
数据形状应比inputShape高一维(批处理大小应高一维)
sort -t ';' -rk3 original.txt | awk 'NF==5 && $3 && $4 && $5' > result.txt
如果它们不相等,有两种方法可以解决问题
使用console.log(xs.shape) // it will return (4,1)
, // Does `xs.inputShape.slice(1) ===[Scaleheight, scaleWidth,3]` ?
shape1 = xs.inputShape.slice(1)
shape2 = [Scaleheight, scaleWidth,3]
const same = (shape1.length == shape2.length) && shape1.every(function(e, i) {
return e === shape2[i];
});
,tf.reshape
,...
或者只是将inputShape更改为等于我们的数据形状
在您的情况下,inputShape和数据形状之间明显不匹配。
首先,创建xs的方法是错误的。实际上,xs具有NaN值的形状(4,1)。就像您创建了带有张量数组的tf.slice
一样。您可以通过以下方式创建xs:
tf.expandDims()
但是,不确定是否可以完全解决问题。您需要遍历上面概述的步骤,即检查xs的形状,与inputShape进行比较,等等...