我已经构建了Keras ConvLSTM神经网络,并且我想基于10次步骤序列来预测一帧:
model = Sequential()
model.add(ConvLSTM2D(filters=128, kernel_size=(3, 3),
input_shape=(None, img_size, img_size, Channels),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(ConvLSTM2D(filters=64, kernel_size=(3, 3),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(ConvLSTM2D(filters=64, kernel_size=(3, 3),
padding='same', return_sequences=False))
model.add(BatchNormalization())
model.add(Conv2D(filters=1, kernel_size=(3, 3),
activation='sigmoid',
padding='same', data_format='channels_last', name='conv2d'))
model.compile(loss='binary_crossentropy', optimizer='adadelta')
培训:
data_train_x:(10, 10, 62, 62, 12)
data_train_y:(10, 1, 62, 62, 1)
model.fit(data_train_x, data_train_y, batch_size=10, epochs=1,
validation_split=0.05)
但是出现以下错误:
ValueError: Error when checking target: expected conv2d to have 4 dimensions, but got array with shape (10, 1, 62, 62, 1)
这是'model.summary()'的结果:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv_lst_m2d_4 (ConvLSTM2D) (None, None, 62, 62, 128) 645632
_________________________________________________________________
batch_normalization_3 (Batch (None, None, 62, 62, 128) 512
_________________________________________________________________
conv_lst_m2d_5 (ConvLSTM2D) (None, None, 62, 62, 64) 442624
_________________________________________________________________
batch_normalization_4 (Batch (None, None, 62, 62, 64) 256
_________________________________________________________________
conv_lst_m2d_6 (ConvLSTM2D) (None, 62, 62, 64) 295168
_________________________________________________________________
batch_normalization_5 (Batch (None, 62, 62, 64) 256
_________________________________________________________________
conv2d (Conv2D) (None, 62, 62, 1) 577
=================================================================
Total params: 1,385,025
Trainable params: 1,384,513
Non-trainable params: 512
_________________________________________________________________
此模型是另一个模型的修订版本,该模型已正确编译,与前一个模型相比,更改的只是最后两层。以前是这样的:
model.add(ConvLSTM2D(filters=64, kernel_size=(3, 3),
padding='same', return_sequences=True))
model.add(BatchNormalization())
model.add(Conv3D(filters=1, kernel_size=(3, 3, 3),
activation='sigmoid',
padding='same', data_format='channels_last', name='conv3d'))
之所以做出此更改,是因为我想获得以下形式的4维输出(样本,output_row,output_col,过滤器)
答案 0 :(得分:1)
错误消息已清除。该模型期望输出等级为4,但是您正在传递等级5的输出。在将data_train_y的第二维输入模型之前,先对其进行压缩。
data_train_y = tf.squeeze(data_train_y, axis=1)