不幸的是,我再次被困住了:
Inductive even : nat > Prop :=
| ev_0 : even 0
| ev_SS (n : nat) (H : even n) : even (S (S n)).
Lemma even_Sn_not_even_n : forall n,
even (S n) <-> not (even n).
Proof.
intros n. split.
+ intros H. unfold not. intros H1. induction H1 as [|n' E' IHn].
- inversion H.
- inversion_clear H. apply IHn in H0. apply H0.
+ intros H. induction n as [|n' IHn].
- exfalso. apply H. apply ev_0.
- apply evSS_inv'.
这是结果:
1 subgoal (ID 179)
n' : nat
H : ~ even (S n')
IHn : ~ even n' -> even (S n')
============================
even n'
到目前为止,我可以用语言来证明这一点:
(n'+ 1)甚至不符合H。因此,根据IHn,n'甚至不等于(双重否定)是不正确的:
IHn : ~ ~ even n'
展开双重否定,我们得出n'是偶数。
但是如何用coq编写呢?
答案 0 :(得分:2)
去除双重否定的常用方法是引入“排除的中间”公理(在Coq.Logic.Classical_Prop
中以名称classic
定义,并应用引理NNPP
。
但是,在这种特殊情况下,您可以通过显示Prop与布尔函数一致来使用 reflection 技术(您可能还记得前面介绍的evenb
函数书)。
(假设您处在IndProp的开头),您很快将在本章后面看到以下定义:
Inductive reflect (P : Prop) : bool -> Prop :=
| ReflectT (H : P) : reflect P true
| ReflectF (H : ~ P) : reflect P false.
您可以证明该声明
Lemma even_reflect : forall n : nat, reflect (even n) (evenb n).
,然后使用它在Prop和布尔值(它们包含相同的信息,即n
的(非)均匀性)之间移动。这也意味着您可以在不使用classic
公理的情况下对该特定属性进行经典推理。
我建议完成IndProp中“反射”部分下的练习,然后尝试以下练习:
(* Since `evenb` has a nontrivial recursion structure, you need the following lemma: *)
Lemma nat_ind2 :
forall P : nat -> Prop,
P 0 -> P 1 -> (forall n : nat, P n -> P (S (S n))) -> forall n : nat, P n.
Proof. fix IH 5. intros. destruct n as [| [| ]]; auto.
apply H1. apply IH; auto. Qed.
(* This is covered in an earlier chapter *)
Lemma negb_involutive : forall x : bool, negb (negb x) = x.
Proof. intros []; auto. Qed.
(* This one too. *)
Lemma evenb_S : forall n : nat, evenb (S n) = negb (evenb n).
Proof. induction n.
- auto.
- rewrite IHn. simpl. destruct (evenb n); auto. Qed.
(* Exercises. *)
Lemma evenb_even : forall n : nat, evenb n = true -> even n.
Proof. induction n using nat_ind2.
(* Fill in here *) Admitted.
Lemma evenb_odd : forall n : nat, evenb n = false -> ~ (even n).
Proof. induction n using nat_ind2.
(* Fill in here *) Admitted.
Lemma even_reflect : forall n : nat, reflect (even n) (evenb n).
Proof. (* Fill in here. Hint: You don't need induction. *) Admitted.
Lemma even_iff_evenb : forall n, even n <-> evenb n = true.
Proof. (* Fill in here. Hint: use `reflect_iff` from IndProp. *) Admitted.
Theorem reflect_iff_false : forall P b, reflect P b -> (~ P <-> b = false).
Proof. (* Fill in here. *) Admitted.
Lemma n_even_iff_evenb : forall n, ~ (even n) <-> evenb n = false.
Proof. (* Fill in here. *) Admitted.
Lemma even_Sn_not_even_n : forall n,
even (S n) <-> not (even n).
Proof. (* Fill in here.
Hint: Now you can convert all the (non-)evenness properties to booleans,
and then work with boolean logic! *) Admitted.