我有一个张量A
,其大小为[batchSize,2,2,2]
,其中batchSize
是一个占位符。在自定义层中,我想将此张量的每个值映射到长度为c
的列表n
中最接近的值。清单是我的密码本,我想根据此密码本量化张量中的每个值;即在列表中找到最接近每个张量值的值,并用该值替换张量值。
我想不出一个“干净的”张量操作会很快做到这一点。我无法遍历batchSize
。在Tensorflow中有做到这一点的方法吗?
答案 0 :(得分:0)
如果我的理解正确,那么tf.HashTable
是可行的。作为说明,我对mean=0, stddev=4
使用了正态分布。
a = tf.random.normal(
shape = [batch, 2, 2, 2],
mean=0.0,
stddev=4
)
我使用了只有5个存储桶的量化(请参见标有数字0、1、2、3、4的图)。这可以扩展为任何长度n
。请注意,我故意使这些铲斗的长度可变。
因此,我的密码本是:
a <= -2 -> bucket 4
-2 < a < -0.5 -> bucket 3
-0.5 <= a < 0.5 -> bucket 0
0.5 <= a < 2.5 -> bucket 1
a >= 2.5 -> bucket 2
该想法是预先创建从缩放的a
到存储桶编号的键/值映射。 (<key,value>
对的数量取决于您所需的输入粒度。在这里,我按10缩放)。下面是初始化映射表和生成的映射(输入按10缩放)的代码。
# The boundary is chosen based on that we clip by min=-4, max=4.
# after scaling, the boundary becomes -40 and 40.
keys = range(-40, 41)
values = []
for k in keys:
if k <= -20:
values.append(4)
elif k < -5:
values.append(3)
elif k < 5:
values.append(0)
elif k < 25:
values.append(1)
else:
values.append(2)
for (k, v) in zip(keys, values):
print ("%2d -> %2d" % (k, v))
-40 -> 4
-39 -> 4
...
-22 -> 4
-21 -> 4
-20 -> 4
-19 -> 3
-18 -> 3
...
-7 -> 3
-6 -> 3
-5 -> 0
-4 -> 0
...
3 -> 0
4 -> 0
5 -> 1
6 -> 1
...
23 -> 1
24 -> 1
25 -> 2
26 -> 2
...
40 -> 2
batch = 3
a = tf.random.normal(
shape = [batch, 2, 2, 2],
mean=0.0,
stddev=4,
dtype=tf.dtypes.float32
)
clip_a = tf.clip_by_value(a, clip_value_min=-4, clip_value_max=4)
SCALE = 10
scaled_clip_a = tf.cast(clip_a * SCALE, tf.int32)
table = tf.contrib.lookup.HashTable(
tf.contrib.lookup.KeyValueTensorInitializer(keys, values), -1)
quantized_a = tf.reshape(
table.lookup(tf.reshape(scaled_clip_a, [-1])),
[batch, 2, 2, 2])
with tf.Session() as sess:
table.init.run()
a, clip_a, scaled_clip_a, quantized_a = sess.run([a, clip_a, scaled_clip_a, quantized_a])
print ('a\n%s' % a)
print ('clip_a\n%s' % clip_a)
print ('scaled_clip_a\n%s' % scaled_clip_a)
print ('quantized_a\n%s' % quantized_a)
结果:
a
[[[[-0.26980758 -5.56331968]
[ 5.04240322 -7.18292665]]
[[-7.11545467 -3.24369478]
[ 1.01861215 -0.04510783]]]
[[[-0.28768024 0.2472897 ]
[ 2.17780781 -5.79106379]]
[[ 8.45582008 4.53902292]
[ 0.138162 -6.19155598]]]
[[[-7.5134449 4.56302166]
[-0.30592337 -0.60313278]]
[[-0.06204566 3.42917275]
[-1.14547718 3.31167102]]]]
clip_a
[[[[-0.26980758 -4. ]
[ 4. -4. ]]
[[-4. -3.24369478]
[ 1.01861215 -0.04510783]]]
[[[-0.28768024 0.2472897 ]
[ 2.17780781 -4. ]]
[[ 4. 4. ]
[ 0.138162 -4. ]]]
[[[-4. 4. ]
[-0.30592337 -0.60313278]]
[[-0.06204566 3.42917275]
[-1.14547718 3.31167102]]]]
scaled_clip_a
[[[[ -2 -40]
[ 40 -40]]
[[-40 -32]
[ 10 0]]]
[[[ -2 2]
[ 21 -40]]
[[ 40 40]
[ 1 -40]]]
[[[-40 40]
[ -3 -6]]
[[ 0 34]
[-11 33]]]]
quantized_a
[[[[0 4]
[2 4]]
[[4 4]
[1 0]]]
[[[0 0]
[1 4]]
[[2 2]
[0 4]]]
[[[4 2]
[0 3]]
[[0 2]
[3 2]]]]