重塑并填充给定长度列表的张量

时间:2019-05-22 13:36:23

标签: pytorch tensor

我给定了形状为in的2d张量a x b,如下所示(其中a = 9A1A2,..., C2代表b维向量):

in

此外,我有一个lengths数组,其中sum(lengths) = a,每个条目都是一个正整数:

lengths

然后我想获得一个3d输出张量out,其中lengths[0]的前in个条目形成第一行,{{1}的下一个lengths[1]个条目形成1}}形成第二行,依此类推。也就是说,输出张量应具有in的形状,并填充零(下图中的每个len(lengths) x max(lengths) x b代表一个0维零向量):

out

由于这是使用反向传播训练的神经网络的一部分,因此所有使用的操作必须是可区分的。使用PyTorch如何做到这一点(理想情况下,具有良好的性能)?

2 个答案:

答案 0 :(得分:1)

您可以使用下面的功能。它是可区分的,并且可以与反向传播一起使用。

def sequence_to_padding(x, length): 
    # declare the shape, it can work for x of any shape.
    ret_tensor = torch.zeros((length.shape[0], torch.max(length)) + tuple(x.shape[1:])) 
    cum_len = 0  
    for i, l in enumerate(length): 
        ret_tensor[i, :l] = x[cum_len: cum_len+l] 
        cum_len += l 
    return ret_tensor 

示例:

in_vector = torch.rand((9,1))  
#tensor([[0.3545],
#    [0.5443],
#    [0.7550],
#    [0.9624],
#    [0.9250],
#    [0.8035],
#    [0.6877],
#    [0.4186],
#    [0.4199]])
lengths = torch.tensor([3, 4, 2])  
sequence_to_padding(in_vector, lengths)
#tensor([[[0.3545],
#     [0.5443],
#     [0.7550],
#     [0.0000]],
#
#    [[0.9624],
#     [0.9250],
#     [0.8035],
#     [0.6877]],
#
#    [[0.4186],
#     [0.4199],
#     [0.0000],
#     [0.0000]]])

答案 1 :(得分:1)

这是我使用torch.nn.utils.rnn.pad_sequence()的实现:

in_tensor = torch.rand((9, 3))
print(in_tensor)
print(36*'=')
lengths = torch.tensor([3, 4, 2])
cum_len = 0
y = []
for idx, val in enumerate(lengths):
    y.append(in_tensor[cum_len : cum_len+val])
    cum_len += val
print(torch.nn.utils.rnn.pad_sequence(y, batch_first=True)))

输出:

# in_tensor of shape (9 x 3)
tensor([[0.9169, 0.3549, 0.6211],
        [0.4832, 0.5475, 0.8862],
        [0.8708, 0.5462, 0.9374],
        [0.4605, 0.1167, 0.5842],
        [0.1670, 0.2862, 0.0378],
        [0.2438, 0.5742, 0.4907],
        [0.1045, 0.5294, 0.5262],
        [0.0805, 0.2065, 0.2080],
        [0.6417, 0.4479, 0.0688]])
====================================
# out tensor of shape (len(lengths) x max(lengths) x b), in this case b is 3
tensor([[[0.9169, 0.3549, 0.6211],
         [0.4832, 0.5475, 0.8862],
         [0.8708, 0.5462, 0.9374],
         [0.0000, 0.0000, 0.0000]],

        [[0.4605, 0.1167, 0.5842],
         [0.1670, 0.2862, 0.0378],
         [0.2438, 0.5742, 0.4907],
         [0.1045, 0.5294, 0.5262]],

        [[0.0805, 0.2065, 0.2080],
         [0.6417, 0.4479, 0.0688],
         [0.0000, 0.0000, 0.0000],
         [0.0000, 0.0000, 0.0000]]])