我有一个如下所示的数据框:
items_df
======================================================
| customer item_type brand price quantity |
|====================================================|
| 1 bread reems 20 10 |
| 2 butter spencers 10 21 |
| 3 jam niles 10 22 |
| 1 bread marks 16 18 |
| 1 butter jims 19 12 |
| 1 jam jills 16 6 |
| 2 bread marks 16 18 |
======================================================
我创建了一个将上述内容转换为字典的rdd:
rdd = items_df.rdd.map(lambda row: row.asDict())
结果如下:
[
{ "customer": 1, "item_type": "bread", "brand": "reems", "price": 20, "quantity": 10 },
{ "customer": 2, "item_type": "butter", "brand": "spencers", "price": 10, "quantity": 21 },
{ "customer": 3, "item_type": "jam", "brand": "niles", "price": 10, "quantity": 22 },
{ "customer": 1, "item_type": "bread", "brand": "marks", "price": 16, "quantity": 18 },
{ "customer": 1, "item_type": "butter", "brand": "jims", "price": 19, "quantity": 12 },
{ "customer": 1, "item_type": "jam", "brand": "jills", "price": 16, "quantity": 6 },
{ "customer": 2, "item_type": "bread", "brand": "marks", "price": 16, "quantity": 18 }
]
我想首先按客户对以上行进行分组。然后,我想介绍定制的新键“面包”,“黄油”,“果酱”,并为该客户分组所有这些行。所以我的rdd从7行减少到3行。
输出如下:
[
{
"customer": 1,
"breads": [
{"item_type": "bread", "brand": "reems", "price": 20, "quantity": 10},
{"item_type": "bread", "brand": "marks", "price": 16, "quantity": 18},
],
"butters": [
{"item_type": "butter", "brand": "jims", "price": 19, "quantity": 12}
],
"jams": [
{"item_type": "jam", "brand": "jills", "price": 16, "quantity": 6}
]
},
{
"customer": 2,
"breads": [
{"item_type": "bread", "brand": "marks", "price": 16, "quantity": 18}
],
"butters": [
{"item_type": "butter", "brand": "spencers", "price": 10, "quantity": 21}
],
"jams": []
},
{
"customer": 3,
"breads": [],
"butters": [],
"jams": [
{"item_type": "jam", "brand": "niles", "price": 10, "quantity": 22}
]
}
]
有人会知道如何使用PySpark实现上述目标吗?我想知道是否有使用reduceByKey()或类似方法的解决方案。我希望尽可能避免使用groupByKey()。
答案 0 :(得分:1)
首先添加一列sass
以透视数据框。
sass
然后,您可以将数据透视表与item_types
组一起使用,并使用items_df = items_df.withColumn('item_types', F.concat(F.col('item_type'),F.lit('s')))
items_df.show()
+--------+---------+--------+-----+--------+----------+
|customer|item_type| brand|price|quantity|item_types|
+--------+---------+--------+-----+--------+----------+
| 1| bread| reems| 20| 10| breads|
| 2| butter|spencers| 10| 21| butters|
| 3| jam| niles| 10| 22| jams|
| 1| bread| marks| 16| 18| breads|
| 1| butter| jims| 19| 12| butters|
| 1| jam| jills| 16| 6| jams|
| 2| bread| marks| 16| 18| breads|
+--------+---------+--------+-----+--------+----------+
同时汇总其他列。
customer
最后,您需要设置F.collect_list()
才能将嵌套的Row转换为dict。
items_df = items_df.groupby(['customer']).pivot("item_types").agg(
F.collect_list(F.struct(F.col("item_type"),F.col("brand"), F.col("price"),F.col("quantity")))
).sort('customer')
items_df.show()
+--------+--------------------+--------------------+--------------------+
|customer| breads| butters| jams|
+--------+--------------------+--------------------+--------------------+
| 1|[[bread, reems, 2...|[[butter, jims, 1...|[[jam, jills, 16,...|
| 2|[[bread, marks, 1...|[[butter, spencer...| []|
| 3| []| []|[[jam, niles, 10,...|
+--------+--------------------+--------------------+--------------------+
答案 1 :(得分:0)
我在rdd中也使用了reduceByKey()的另一种方法。给定数据框items_df,首先将其转换为rdd:
rdd = items_df.rdd.map(lambda row: row.asDict())
将每行转换为一个元组(客户[row_obj]),其中列表中包含row_obj:
rdd = rdd.map(lambda row: ( row["customer"], [row] ) )
使用reduceByKey按客户分组,其中列表是针对给定客户的:
rdd = rdd.reduceByKey(lambda x,y: x+y)
将元组转换回字典,其中键是客户,值是所有关联行的列表:
rdd = rdd.map(lambda tup: { tup[0]: tup[1] } )
由于每个客户数据都已排成一行,因此我们可以使用自定义功能将数据分离为面包,黄油和果酱:
def organize_items_in_customer(row):
cust_id = list(row.keys())[0]
items = row[cust_id]
new_cust_obj = { "customer": cust_id, "breads": [], "butters": [], "jams": [] }
plurals = { "bread":"breads", "butter":"butters", "jam":"jams" }
for item in items:
item_type = item["item_type"]
key = plurals[item_type]
new_cust_obj[key].append(item)
return new_cust_obj
调用上面的函数来转换rdd:
rdd = rdd.map(organize_items_in_customer)