我在Cloudera QuickStart VM中使用Spark控制台。
下面提供了一个输出文件。它显示前20条记录。每条记录都是电视频道名称及其相应的观众数量的组合。有几百条记录。
目标是按照电视频道名称对此RDD(channel_views)进行分组,以便每条记录都是电视频道名称的唯一显示以及相应观众数量的总和。
channel_views = joined_dataset.map(extract_channel_views)
下面是我努力制作上述所需输出/目标的代码集
def some_function(a,b):
some_result = a + b
return some_result
channel_views.reduceByKey(some_function).collect()
以下代码的输出:
channel_views.take(20)
[(1038, u'DEF'),
(1038, u'CNO'),
(1038, u'CNO'),
(1038, u'NOX'),
(1038, u'MAN'),
(1038, u'MAN'),
(1038, u'XYZ'),
(1038, u'BAT'),
(1038, u'CAB'),
(1038, u'DEF'),
(415, u'DEF'),
(415, u'CNO'),
(415, u'CNO'),
(415, u'NOX'),
(415, u'MAN'),
(415, u'MAN'),
(415, u'XYZ'),
(415, u'BAT'),
(415, u'CAB'),
(415, u'DEF')]
答案 0 :(得分:4)
您正在处理向后的数据集。使用map
(或更改提取)将元组从(count,name)
交换为(name, count)
byKey
方法使用元组中的第一项作为键,因此您的代码将连接字符串,按原样键入计数。
答案 1 :(得分:2)
我不知道python所以我在Scala中这样做了。你可以转换为python。所以,你去吧
scala> val input = sc.parallelize(Seq((1038, "DEF"),
| (1038, "CNO"),
| (1038, "CNO"),
| (1038, "NOX"),
| (1038, "MAN"),
| (1038, "MAN"),
| (1038, "XYZ"),
| (1038, "BAT"),
| (1038, "CAB"),
| (1038, "DEF"),
| (415, "DEF"),
| (415, "CNO"),
| (415, "CNO"),
| (415, "NOX"),
| (415, "MAN"),
| (415, "MAN"),
| (415, "XYZ"),
| (415, "BAT"),
| (415, "CAB"),
| (415, "DEF"))
| )
input: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[12] at parallelize at <console>:22
scala> val data = input.map( v => (v._2,v._1) )
data: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[13] at map at <console>:24
scala> data.foreach(println)
(BAT,1038)
(DEF,415)
(CNO,415)
(BAT,415)
(CAB,415)
(DEF,415)
(MAN,1038)
(XYZ,1038)
(CNO,1038)
(NOX,1038)
(DEF,1038)
(MAN,1038)
(CNO,415)
(MAN,415)
(CAB,1038)
(XYZ,415)
(NOX,415)
(CNO,1038)
(MAN,415)
(DEF,1038)
scala> val result = data.reduceByKey( (x,y) => x+y)
result: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[14] at reduceByKey at <console>:26
scala> result.foreach(println)
(NOX,1453)
(MAN,2906)
(CNO,2906)
(CAB,1453)
(DEF,2906)
(BAT,1453)
(XYZ,1453)
scala>
答案 2 :(得分:0)
这是pyspark代码:
for i in channel_views.map(lambda rec: (rec[0], rec[1])).reduceByKey(lambda acc, value: acc+value): print(i)