我正在尝试找出如何在R中使用面板回归,并且不确定是否要使用FE,RE,池化或模型之间
你好,
我是面板回归的新手,正努力使自己步入正轨。我目前正在使用一种模型来预测资金的年度总回报,其中包括连续,分类和互动期限。我的索引是资金ID和年份,分类变量是每个级别的虚拟变量(不包括1个虚拟对象)。由于我想包括时变变量(虚拟变量),因此我建立了具有effects =“ time”的固定效果模型,因为R不再删除这些变量,但已阅读到使用model =“ pooling”也是一种合适的方法使用时不变变量。我还建立了一个随机的“中间”模型,因为这些模型使我可以将它们保留在其中。“中间”模型的调整后R2很高,但是关于该模型估计器的含义似乎很少。这是否是正确的使用方法。基本上,我一直在尝试阅读所有我能找到的最佳方法,而且似乎有很多不同的方法,所以我的头有些微旋转!我对如何判断使用哪种最佳模型/是否真的误入歧途的任何见解将不胜感激。
固定效果模型(使用model =“ within”)Europewithin <- plm(TotalReturnAnnual~ UKDummy+ GermanyDummy + NetherlandsDummy + FranceDummy + ItalyDummy + FinlandDummy + Residential + IndustrialLogistics + Multi.Sector + Office + Retail + CoreClosedEnd+ GAV + I(GAV^2)+ Age + I(Age^2)+ gearingLag + I(gearingLag^2)+ InterestRate +CPIGrowth + BBBBonds + InflationSurprise + M1MoneySupply + InterestRate + Dummy2009Onwards+ GermanyDummy:Dummy2007_2008 + UKDummy:Dummy2009Onwards + UKDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2009Onwards + GermanyDummy:Dummy2007_2008 + GermanyDummy:Dummy2009Onwards + FranceDummy:Dummy2007_2008 + FranceDummy:Dummy2009Onwards + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2009Onwards + FinlandDummy:Dummy2007_2008 + FinlandDummy:Dummy2009Onwards + gearingLag:CoreDummy + I(gearingLag^2):CoreDummy + BrentCrude + RealGDPGrowth + CPIGrowth:InflationSurprise + RealGDPGrowth:InflationSurprise +gearingLag:UpmarketDummy + gearingLag:DownMarketDummy , data=panel, model="within", index = c("FundID", "Year"), effect="time")
合并模型
Europepool <- plm(TotalReturnAnnual~ UKDummy+ GermanyDummy + NetherlandsDummy + FranceDummy + ItalyDummy + FinlandDummy + Residential + IndustrialLogistics + Multi.Sector + Office + Retail + CoreClosedEnd+ GAV + I(GAV^2)+ Age + I(Age^2)+ gearingLag + I(gearingLag^2)+ InterestRate +CPIGrowth + BBBBonds + InflationSurprise + M1MoneySupply + InterestRate + Dummy2009Onwards+ GermanyDummy:Dummy2007_2008 + UKDummy:Dummy2009Onwards + UKDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2009Onwards + GermanyDummy:Dummy2007_2008 + GermanyDummy:Dummy2009Onwards + FranceDummy:Dummy2007_2008 + FranceDummy:Dummy2009Onwards + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2009Onwards + FinlandDummy:Dummy2007_2008 + FinlandDummy:Dummy2009Onwards + gearingLag:CoreDummy + I(gearingLag^2):CoreDummy + BrentCrude + RealGDPGrowth + CPIGrowth:InflationSurprise + RealGDPGrowth:InflationSurprise +gearingLag:UpmarketDummy + gearingLag:DownMarketDummy , data=panel, model="pooling", index = c("FundID", "Year"))
#between model“ between”对个人或时间均值进行估算
betweenmodel <- plm(TotalReturnAnnual~ UKDummy+ GermanyDummy + NetherlandsDummy + FranceDummy + ItalyDummy + FinlandDummy + Residential + IndustrialLogistics + Multi.Sector + Office + Retail + CoreClosedEnd+ GAV + I(GAV^2)+ Age + I(Age^2)+ gearingLag + I(gearingLag^2)+ InterestRate +CPIGrowth + BBBBonds + InflationSurprise + M1MoneySupply + InterestRate + Dummy2009Onwards+ GermanyDummy:Dummy2007_2008 + UKDummy:Dummy2009Onwards + UKDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2009Onwards + GermanyDummy:Dummy2007_2008 + GermanyDummy:Dummy2009Onwards + FranceDummy:Dummy2007_2008 + FranceDummy:Dummy2009Onwards + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2009Onwards + FinlandDummy:Dummy2007_2008 + FinlandDummy:Dummy2009Onwards + gearingLag:CoreDummy + I(gearingLag^2):CoreDummy + BrentCrude + RealGDPGrowth + CPIGrowth:InflationSurprise + RealGDPGrowth:InflationSurprise +gearingLag:UpmarketDummy + gearingLag:DownMarketDummy, data=panel, model="between", index = c("FundID", "Year"))
随机模型
Europerandom <- plm(TotalReturnAnnual~ UKDummy+ GermanyDummy + NetherlandsDummy + FranceDummy + ItalyDummy + FinlandDummy + Residential + IndustrialLogistics + Multi.Sector + Office + Retail + CoreClosedEnd+ GAV + I(GAV^2)+ Age + I(Age^2)+ gearingLag + I(gearingLag^2)+ InterestRate +CPIGrowth + BBBBonds + InflationSurprise + M1MoneySupply + InterestRate + Dummy2009Onwards+ GermanyDummy:Dummy2007_2008 + UKDummy:Dummy2009Onwards + UKDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2007_2008 + NetherlandsDummy:Dummy2009Onwards + GermanyDummy:Dummy2007_2008 + GermanyDummy:Dummy2009Onwards + FranceDummy:Dummy2007_2008 + FranceDummy:Dummy2009Onwards + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2007_2008 + ItalyDummy:Dummy2009Onwards + FinlandDummy:Dummy2007_2008 + FinlandDummy:Dummy2009Onwards + gearingLag:CoreDummy + I(gearingLag^2):CoreDummy + BrentCrude + RealGDPGrowth + CPIGrowth:InflationSurprise + RealGDPGrowth:InflationSurprise +gearingLag:UpmarketDummy + gearingLag:DownMarketDummy , data=panel, model="random", index = c("FundID", "Year"))
我希望能够自信地证明使用正确方法的正确性,对缺乏数据表示歉意,我无法共享它。