我有以下DataFrame:
import pandas as pd
df = pd.DataFrame({'id_emp': [1,2,3,4,1],
'name_emp': ['x','y','z','w','x'],
'donnated_value':[1100,11000,500,300,1000],
'refound_value':[22000,22000,50000,450,90]
})
df['return_percentagem'] = 100 *
df['refound_value']/df['donnated_value']
df['classification_roi'] = ''
def comunidade(i):
if i < 50:
return 'Bad Investment'
elif i >=50 and i < 100:
return 'Median Investment'
elif i >= 100:
return 'Good Investment'
df['classification_roi'] = df['return_percentagem'].map(comunidade)
df
节点将是“ id_emp”。如果两个节点具有相同的“ id_emp”,但在“ classification_roi”列中具有不同的分类,或者在“ classification_roi”列中具有相同的等级,则将存在连接。简而言之,如果节点具有相同的ID或“ classification_roi”列中的分类相同,则它们具有连接。
我对networkx并没有太多练习,而我正在尝试的东西远非理想:
import networkx as nx
G = nx.from_pandas_edgelist(df, 'id_emp', 'return_percentagem')
nx.draw(G, with_labels=True)
欢迎所有帮助。
答案 0 :(得分:0)
在这里,我没有使用from_pandas_edgelist
。相反,请列出理解和for循环:
import matplotlib.pyplot as plt
import networkx as nx
import itertools
G = nx.Graph()
# use index to name nodes, rather than id_emp, otherwise
# multiple nodes would end up having the same name
G.add_nodes_from([a for a in df.index])
#create edges:
#same employee edges
for ie in set(df['id_emp']):
indices = df[df['id_emp']==ie].index
G.add_edges_from(itertools.product(indices,indices))
# same classification edges
for cr in set(df['classification_roi']):
indices = df[df['classification_roi']==cr].index
G.add_edges_from(itertools.product(indices,indices))
nx.draw(G)
plt.show()
可选:着色,以区分节点。
plt.subplot(121)
plt.title('coloured by id_emp')
nx.draw(G, node_color=df['id_emp'], cmap='viridis')
plt.subplot(122)
color_mapping = {
'Bad Investment': 0,
'Median Investment': 1,
'Good Investment':2}
plt.title('coloured by classification_roi')
nx.draw(G, node_color=df['classification_roi'].replace(color_mapping), cmap='RdYlBu')