从LDA对象还原原始文档ID

时间:2019-05-16 08:02:02

标签: r lda tidytext topicmodels

我正在尝试使用topicmodels中的函数将术语(在给定文档中)的“共识”主题预测(beta)与文档本身(gamma)中最有可能预测的主题进行比较。 尽管在文档上使用groupby()并在gamma上选择top_n()可以很容易地从文档中提取出最可能预测的主题,但是在“ beta”估算中,唯一文档ID将在输出中被抑制,输出仅包含三列(topictermbeta)。这不允许人们从给定文档的术语中获得“共识”主题预测(beta)。

以我自己的数据为例:

Sys.setlocale("LC_ALL","Chinese")  # reset to simplified Chinese encoding as the text data is in Chinese
library(foreign)
library(dplyr)
library(plyr)
library(tidyverse)
library(tidytext)
library(tm)
library(topicmodels)

sample_dtm <- readRDS(gzcon(url("https://www.dropbox.com/s/gznqlncd9psx3wz/sample_dtm.rds?dl=1")))

lda_out <- LDA(sample_dtm, k = 2, control = list(seed = 1234))

word_topics <- tidy(lda_out, matrix = "beta")

head(word_topics, n = 4)
# A tibble: 6 x 3
  topic term      beta
  <int> <chr>    <dbl>
1     1 费解  8.49e- 4
2     2 费解  1.15e- 9
3     1 上    2.92e- 3

document_gamma <- tidy(lda_out, matrix = "gamma")

head(document_gamma, n = 4)
# A tibble: 6 x 3
  document topic   gamma
  <chr>    <int>   <dbl>
1 1203232      1 0.00374
2 529660       1 0.0329 
3 738921       1 0.00138
4 963374       1 0.302

无论如何,我是否可以从lda输出中恢复文档ID,并与beta估算值(存储在word_topics对象中的data.frame结合起来?这样一来,将betagamma的共识估计的主题进行比较就容易得多。

1 个答案:

答案 0 :(得分:0)

如果我对您的理解正确,我相信您想要的功能是augment(),该函数将返回一个表,其中每个原始文档术语对均包含一行,并与主题相关。

Sys.setlocale("LC_ALL","Chinese")  # reset to simplified Chinese encoding as the text data is in Chinese
#> Warning in Sys.setlocale("LC_ALL", "Chinese"): OS reports request to set
#> locale to "Chinese" cannot be honored
#> [1] ""
library(foreign)
library(dplyr)
library(plyr)
#> -------------------------------------------------------------------------
#> You have loaded plyr after dplyr - this is likely to cause problems.
#> If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
#> library(plyr); library(dplyr)
#> -------------------------------------------------------------------------
#> 
#> Attaching package: 'plyr'
#> The following objects are masked from 'package:dplyr':
#> 
#>     arrange, count, desc, failwith, id, mutate, rename, summarise,
#>     summarize
library(tidyverse)
library(tidytext)
library(tm)
library(topicmodels)

sample_dtm <- readRDS(gzcon(url("https://www.dropbox.com/s/gznqlncd9psx3wz/sample_dtm.rds?dl=1")))

lda_out <- LDA(sample_dtm, k = 2, control = list(seed = 1234))

augment(lda_out, sample_dtm)
#> # A tibble: 18,676 x 4
#>    document term     count .topic
#>    <chr>    <chr>    <dbl>  <dbl>
#>  1 649      作揖         1      1
#>  2 649      拳头         1      1
#>  3 649      赞           1      1
#>  4 656      住           1      1
#>  5 656      小区         1      1
#>  6 656      没           1      1
#>  7 656      注意         2      1
#>  8 1916     中国         1      1
#>  9 1916     中国台湾     1      1
#> 10 1916     反对         1      1
#> # … with 18,666 more rows

reprex package(v0.2.1)于2019-06-04创建

这将文档ID从LDA模型连接到主题。听起来您已经了解了这一点,但只需重申一下:

  • beta矩阵是单词主题概率
  • gamma矩阵是文档主题概率