我有一个Dice poker作业。我设法生成了一个数组,其中包含滚动值的频率,但是我无法编写循环来确定手的值是多少。
希望获得有关使用哪种循环组合来确定我握着哪只手的建议。从那里,我应该能够将其转换为一个函数,并编写一个函数来将该手与其他人进行比较。
#define _CRT_SECURE_NO_WARNINGS
#define handsz 5 //NO ACES IN THE POCKET WITH THIS GUY!
#define diesz 6 //All dice played will have 6 sides
#define ranks 7 //Seven ranks to hold
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int roll_die(void);
int main() {
srand(time(NULL));
int i;
int player_hand[handsz] = { 0 };
int donkeyvalue = 0;
int RandomNo;
for (i = 0; i < handsz; i++) {
RandomNo = roll_die(donkeyvalue);
player_hand[i] = RandomNo;
}
int player_die_count[7] = { 0 };
for (i = 0; i < handsz; i++) {
player_die_count[player_hand[i]] = player_die_count[player_hand[i]] + 1;
}
return 0;
}
int roll_die(void) {
return (1 + rand() % 6);
}
答案 0 :(得分:1)
通过数组player_die_count
,使用循环,您可以确定:
使用一个简单的公式,您可以确定自己是否有直线:
has_straight = (player_die_count[1] == 1 && player_die_count[2] == 1 &&
player_die_count[3] == 1 && player_die_count[4] == 1 &&
player_die_count[5] == 1) ||
(player_die_count[2] == 1 && player_die_count[3] == 1 &&
player_die_count[4] == 1 && player_die_count[5] == 1 &&
player_die_count[6] == 1);
可以简化为:
has_straight = (player_die_count[2] * player_die_count[3] *
player_die_count[4] * player_die_count[5]) == 1;
然后,您可以计算从0
到7
的付款人的手价:
您可以通过根据最高骰子的值对不同组合进行排名来优化得分。 6
的五种胜过5
的五种,等等。
这是一个完整的程序,可以使用rand()
或使用所有组合的顺序分布来输出许多平局的得分和平局:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define handsz 5
#define diesz 6 // All dice played will have 6 sides, numbered 1 to 6
static int roll_die(void) {
return 1 + rand() % 6;
}
int main(int argc, char *argv[]) {
int iter = 1;
int use_random = 1;
if (argc > 1) {
iter = strtol(argv[1], NULL, 0);
if (iter < 0) {
use_random = 0;
iter = -iter;
}
}
srand(clock());
for (int n = 0; n < iter; n++) {
int player_hand[handsz];
if (use_random) {
for (int i = 0; i < handsz; i++)
player_hand[i] = roll_die();
} else {
for (int i = 0, mm = n; i < handsz; i++, mm /= 6)
player_hand[i] = 1 + mm % 6;
}
int player_die_count[7] = { 0 };
for (int i = 0; i < handsz; i++) {
player_die_count[player_hand[i]] += 1;
}
int pairs, threes, fours, fives, score;
pairs = threes = fours = fives = score = 0;
for (int i = diesz; i > 0; i--) {
switch (player_die_count[i]) {
case 5:
fives = i * 11111;
break;
case 4:
fours = i * 1111;
break;
case 3:
threes = i * 111;
break;
case 2:
pairs = pairs * 100 + i * 11;
break;
case 1:
score = score * 10 + i;
break;
}
}
if (fives)
score += 700000 + fives;
else
if (fours)
score += 600000 + fours * 10;
else
if (threes && pairs)
score += 500000 + threes * 100 + pairs;
else
#ifndef NO_STRAIGHTS
if (score == 54321 || score == 65432)
score += 400000;
else
#endif
if (threes)
score += 300000 + threes * 100;
else
if (pairs >= 100)
score += 200000 + pairs * 10;
else
if (pairs)
score += 100000 + pairs * 1000;
printf("%d: %d %d %d %d %d\n",
score, player_hand[0], player_hand[1],
player_hand[2], player_hand[3], player_hand[4]);
}
return 0;
}
使用参数7776
运行程序来检查简单的roll_die
函数提供的实际分布是非常有趣的。在我的系统上,伪随机分布有时会给出令人惊讶的结果:
chqrlie$ ./pokerdice 7776 | sort -nr | head -10 755555: 5 5 5 5 5 744444: 4 4 4 4 4 744444: 4 4 4 4 4 722222: 2 2 2 2 2 711111: 1 1 1 1 1 711111: 1 1 1 1 1 711111: 1 1 1 1 1 711111: 1 1 1 1 1 666665: 6 6 6 5 6 666665: 6 6 5 6 6