我有以下代码。 我想看看在训练过程中权重和偏见如何变化。 理想情况下,我希望在张量板上看到它。 有人可以向我展示如何执行此操作。
from time import time
import numpy as np
import matplotlib.pyplot as plt
import keras
import tensorflow as tf
from keras.callbacks import TensorBoard
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x = scaler.fit_transform(np.array([[1965.0], [1980.0]])).reshape(-1,1)
y = scaler.fit_transform(np.array([[320.0], [345.0]])).reshape(-1,1)
tensorboard = TensorBoard(log_dir='logs/{}'.format(time()), write_grads=True)
model = keras.Sequential([keras.layers.Dense(1, activation='linear')])
model.compile(optimizer='sgd',
loss="mean_squared_error")
model.fit(x=x, y=y, epochs=1000, callbacks=[tensorboard])
yHat = model.predict(x)
答案 0 :(得分:2)