我正在制作一个模型,该模型使用星期和月份中的某天来预测航班起飞时间的延迟。每个数据条目的格式为[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0],第一个12位数字表示月份,后7位表示一周中的某天。标签是整数,可以是正数或负数,表示延迟的小时数。
这是我的代码:
#
#
# This model uses day and month as a predictor of delay.
# https://www.kaggle.com/usdot/flight-delays#flights.csv
#
#
# TensorFlow
import tensorflow as tf
from tensorflow import keras
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Dense, Activation
from sklearn.preprocessing import minmax_scale
# Helper libraries
import numpy as np
import csv
# Get features and labels
train_features = np.load("train_features.npy")[:10000, :]
train_labels = np.load("train_labels.npy")[:10000]
print(train_labels)
test_features = np.load("test_features.npy")[:1000, :]
test_labels = np.load("test_labels.npy")[:1000]
# Risk Assessment Model
model = Sequential()
model.add(Dense(6, activation="relu", input_dim=19))
model.add(Dense(1, activation="sigmoid"))
model.compile(optimizer="rmsprop", loss="mean_squared_logarithmic_error", metrics=["accuracy"])
model.fit(
train_features,
train_labels,
epochs=100,
verbose=1,
validation_data=(test_features, test_labels),
)
model.save("time_model.h5")
该模型的准确性很差,我很难理解为什么。我不知道我应该使用哪种激活功能,我已经完全迷失了。预先感谢您的帮助。