我正在实现拓扑排序的一种变体(在scala-graph之上),该变体返回所有拓扑顺序,而不只是一个。我有一个树递归实现,我想使尾递归。我不想使用蹦床,而是要模仿this answer中所述的调用堆栈。
这是我算法的树递归版本:
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.Set
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Unit = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
processSources(getSources(), indegree, List[graph.NodeT](), 0)
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int): Unit = {
if (sources.nonEmpty) {
// `sources` contain all the nodes we can pick
// --> generate all possibilities
for (src <- sources) {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
processSources(newSources, newIndegrees, newTopOrder, cnt + 1)
}
}
else if (cnt != graph.nodes.size) {
println("There is a cycle in the graph.")
}
else {
println(topOrder.reverse)
}
}
}
我们可以如下运行算法
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
allTopologicalSorts(graph)
正确返回的地方
现在,我尝试通过手动保留堆栈来实现尾递归版本
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.Set
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Unit = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int]): Unit = {
type Order = List[graph.NodeT]
case class Frame(sources: List[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: Order, cnt: Int)
def step(stack: List[Frame]): Unit = {
stack match {
case Frame(src :: rest, indegrees, topOrder, cnt) :: tail => {
val onBacktrackingFrame = Frame(rest, indegrees, topOrder, cnt)
// Process src now and remember to do the rest later
val newTopOrder = src :: topOrder
var newSources = rest
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = adjacent :: newSources
}
}
val recursionFrame = Frame(newSources, newIndegrees, newTopOrder, cnt + 1)
step(recursionFrame :: onBacktrackingFrame :: tail)
}
case Frame(Nil, indegrees, topOrder, cnt) :: tail => {
println(topOrder.reverse)
step(tail)
}
case Nil =>
}
}
step(List(Frame(sources.toList, indegrees, List[graph.NodeT](), 0)))
}
processSources(getSources(), indegree)
}
但是,这不起作用,因为它会导致
堆栈有一些问题,但是我找不到问题。
相关问题:Tail recursive algorithm for generating all topological orderings in a graph
答案 0 :(得分:1)
此解决方案是尾递归AFAICT,在我运行它时可以使用,尽管我将其部分更改回了第一个版本,尤其是将某些类型从List
更改为Set
,以便保持从最初的较小更改(我相信再次将其更改回List
应该相对简单):
def allTopologicalSortsNew[T](graph: Graph[T, DiEdge]): Unit = {
type Order = List[graph.NodeT]
case class Frame(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: Order, cnt: Int)
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(initialSources: Set[graph.NodeT], initialIndegrees: Map[graph.NodeT, Int]): Unit = {
def step(stack: List[Frame]): Unit = {
stack match {
case Frame(sources, indegrees, topOrder, cnt) :: tail if !sources.isEmpty => {
val futureFrames = for (src <- sources) yield {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
Frame(newSources, newIndegrees, newTopOrder, cnt + 1)
}
step(futureFrames.toList ::: tail)
}
case Frame(sources, indegrees, topOrder, cnt) :: tail if sources.isEmpty => {
println(topOrder.reverse)
step(tail)
}
case Nil =>
}
}
step(List(Frame(initialSources, initialIndegrees, List[graph.NodeT](), 0)))
}
processSources(getSources(), indegree)
}
答案 1 :(得分:0)
尝试
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Stream[List[graph.NodeT]] = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
case class Frame(arg: Argument, parentArg: Option[Argument], res: Result)
case class Argument(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int)
sealed trait Result
case object NotExpanded extends Result
case object Expanded extends Result
case class Calculated(value: Output) extends Result
type Output = Stream[List[graph.NodeT]]
// extract result from final state of stack
def processSources(arg: Argument): Output =
step1(List(Frame(arg, None, NotExpanded))) match {
case Frame(`arg`, None, Calculated(res)) :: Nil => res
}
@tailrec
// process stack as long as necessary
def step1(stack: List[Frame]): List[Frame] = {
val x = step(stack, Nil)
x match {
case Frame(arg, None, Calculated(res)) :: Nil => x
case _ => step1(x)
}
}
// helper method for handling "recursion backward" case in "step"
def calcFromChildren(stack: List[Frame], parentArg: Argument): Option[(List[Frame], Frame)] = {
val (childFrames, rest) = stack.span {
case Frame(_, Some(`parentArg`), Calculated(_)) => true
case _ => false
}
val output: Output = childFrames.map {
case Frame(arg, Some(`parentArg`), Calculated(res)) => res
}.toStream.flatten
rest match {
case Frame(`parentArg`, parentArg1, Expanded) :: rest1 if parentArg.sources.nonEmpty =>
Some(rest1, Frame(parentArg, parentArg1, Calculated(output)))
case _ => None
}
}
@tailrec
// process stack once
def step(stack: List[Frame], acc: List[Frame]): List[Frame] = {
stack match {
// recursion backward
case Frame(arg, Some(parentArg), Calculated(res)) :: frames if calcFromChildren(stack, parentArg).isDefined =>
val (rest1, parentFrame) = calcFromChildren(stack, parentArg).get
step(rest1, parentFrame :: acc)
// base
case Frame(arg, parentArg, _) :: frames if arg.sources.isEmpty && arg.cnt != graph.nodes.size =>
throw new Error("There is a cycle in the graph.")
case Frame(arg, parentArg, _) :: frames if arg.sources.isEmpty =>
val res = arg.topOrder.reverse #:: Stream.empty[List[graph.NodeT]]
step(frames, Frame(arg, parentArg, Calculated(res)) :: acc)
// recursion forward
case Frame(arg, parentArg, NotExpanded) :: frames =>
val childFrames = arg.sources.toList.map(src => {
val newTopOrder = src :: arg.topOrder
var newSources = arg.sources - src
var newIndegrees = arg.indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
val newArg = Argument(newSources, newIndegrees, newTopOrder, arg.cnt + 1)
Frame(newArg, Some(arg), NotExpanded)
})
step(frames, Frame(arg, parentArg, Expanded) :: childFrames.reverse ::: acc)
// ignore if not "recursion backward" case
case Frame(arg, parentArg, Expanded) :: frames => step(frames, Frame(arg, parentArg, Expanded) :: acc)
case Frame(arg, parentArg, Calculated(res)) :: frames => step(frames, Frame(arg, parentArg, Calculated(res)) :: acc)
// stack is processed once
case Nil => acc.reverse
}
}
processSources(Argument(getSources(), indegree, List[graph.NodeT](), 0))
}