我正在使用张量流对象检测api。此api的问题在于它会导出冻结图以进行推断。我无法使用该图表进行投放。因此,作为解决方案,我遵循了教程here。但是,当我尝试导出图形时,出现以下错误:
InvalidArgumentError(请参阅上面的回溯):从中还原 检查点失败。这很可能是由于两者之间的不匹配 当前图和来自检查点的图。请确保 您尚未更改基于检查点的预期图形。 原始错误:
分配需要两个张量的形状匹配。 lhs shape = [1024,4] rhs shape = [1024,8]
[[节点保存/分配_258(在 /home/deploy/models/research/object_detection/exporter.py:67)= 分配[T = DT_FLOAT, _class = [“ loc:@ SecondStageBoxPredictor / BoxEncodingPredictor / weights”],use_locking = true,validate_shape = true, _device =“ / job:localhost / replica:0 / task:0 / device:GPU:0”](SecondStageBoxPredictor / BoxEncodingPredictor / weights, save / RestoreV2 / _517)]] [[{{node save / RestoreV2 / _522}} = _SendT = DT_FLOAT,client_terminated = false,recv_device =“ / job:localhost /副本:0 / task:0 / device:GPU:0”, send_device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”, send_device_incarnation = 1,tensor_name =“ edge_527_save / RestoreV2”, _device =“ / job:localhost /副本:0 /任务:0 /设备:CPU:0”]]
该错误表明图中不匹配。一个可能的原因可能是我正在使用预训练图进行训练,该训练可能具有4个分类,而我的模型具有8个分类。 (因此形状不匹配)。 Deeplab model及其针对它们的解决方案也存在类似的问题
具体模型是使用--initialize_last_layer=False
和--last_layers_contain_logits_only=False
参数开始训练。但是tensorflow对象检测没有该参数。那么,我应该如何进行?另外,还有其他方法可以服务于Tensorflow对象检测API吗?
我的配置文件如下:
model {
faster_rcnn {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: 1000
width: 1000
resize_method: AREA
}
}
feature_extractor {
type: "faster_rcnn_inception_v2"
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.00999999977648
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
use_dropout: false
dropout_keep_probability: 1.0
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config {
batch_size: 8
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
adam_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 0.00010000000475
schedule {
step: 40000
learning_rate: 3.00000010611e-05
}
}
}
}
use_moving_average: true
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/deploy/models/research/object_detection/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
num_steps: 60000
max_number_of_boxes: 100
}
train_input_reader {
label_map_path: "/home/deploy/models/research/object_detection/Training_carrot_060219/carrot_identify.pbtxt"
tf_record_input_reader {
input_path: "/home/deploy/models/research/object_detection/Training_carrot_060219/train.record"
}
}
eval_config {
num_visualizations: 100
num_examples: 135
eval_interval_secs: 60
use_moving_averages: false
}
eval_input_reader {
label_map_path: "/home/deploy/models/research/object_detection/Training_carrot_060219/carrot_identify.pbtxt"
shuffle: true
num_epochs: 1
num_readers: 1
tf_record_input_reader {
input_path: "/home/deploy/models/research/object_detection/Training_carrot_060219/test.record"
}
sample_1_of_n_examples: 1
}
答案 0 :(得分:1)
导出用于tf服务的模型时,配置文件和检查点文件应彼此对应。
问题是,导出定制的训练模型时,您使用的是旧配置文件和新检查点文件。