我有2个Python数据框:
第一个数据框包含导入到该数据框的所有数据,其中包括“产品代码”,“情感”,“ summaryText”,“ reviewText”等。所有初始审核数据。
DFF = DFF[['prodcode', 'summaryText', 'reviewText', 'overall', 'reviewerID', 'reviewerName', 'helpful','reviewTime', 'unixReviewTime', 'sentiment','textLength']]
产生:
prodcode summaryText reviewText overall reviewerID ... helpful reviewTime unixReviewTime sentiment textLength
0 B00002243X Work Well - Should Have Bought Longer Ones I needed a set of jumper cables for my new car... 5.0 A3F73SC1LY51OO ... [4, 4] 08 17, 2011 1313539200 2 516
1 B00002243X Okay long cables These long cables work fine for my truck, but ... 4.0 A20S66SKYXULG2 ... [1, 1] 09 4, 2011 1315094400 2 265
2 B00002243X Looks and feels heavy Duty Can't comment much on these since they have no... 5.0 A2I8LFSN2IS5EO ... [0, 0] 07 25, 2013 1374710400 2 1142
3 B00002243X Excellent choice for Jumper Cables!!! I absolutley love Amazon!!! For the price of ... 5.0 A3GT2EWQSO45ZG ... [19, 19] 12 21, 2010 1292889600 2 4739
4 B00002243X Excellent, High Quality Starter Cables I purchased the 12' feet long cable set and th... 5.0 A3ESWJPAVRPWB4 ... [0, 0] 07 4, 2012 1341360000 2 415
第二个数据框是所有产品代码以及对该产品进行的所有评论/所有评论的比率的分组。它是该评论分数与该特定产品做出的所有评论分数之比。
df1 = (
DFF.groupby(["prodcode", "sentiment"]).count()
.join(DFF.groupby("prodcode").count(), "prodcode", rsuffix="_r"))[['reviewText', 'reviewText_r']]
df1['result'] = df1['reviewText']/df1['reviewText_r']
df1 = df1.reset_index()
df1 = df1.pivot("prodcode", 'sentiment', 'result').fillna(0)
df1 = round(df1 * 100)
df1.astype('int')
sorted_df2 = df1.sort_values(['0', '1', '2'], ascending=False)
产生以下DF:
sentiment 0 1 2
prodcode
B0024E6QOO 80.0 0.0 20.0
B000GPV2QA 67.0 17.0 17.0
B0067DNSUI 67.0 0.0 33.0
B00192JH4S 62.0 12.0 25.0
B0087FSA0C 60.0 20.0 20.0
B0002KM5L0 60.0 0.0 40.0
B000DZBP60 60.0 0.0 40.0
B000PJCBOE 60.0 0.0 40.0
B0033A5PPO 57.0 29.0 14.0
B003POL69C 57.0 14.0 29.0
B0002Z9L8K 56.0 31.0 12.0
我现在尝试通过两种方式过滤我的第一个数据帧。第一个,由第二个数据帧的结果。那样的话,我的意思是我希望第一个数据帧由df1.sentiment ['0']> 40的第二个数据帧通过prodcode进行过滤。从该列表中,我想按那些'sentiment'的行过滤第一个数据帧。从第一个数据帧= 0开始。
从较高的角度来看,我正在尝试在第一个数据框中获取产品的prodcode,summaryText和reviewText,这些产品在较低的情感分数中具有较高的比率,并且其情感为0。
答案 0 :(得分:0)
类似的东西:
假设所需的所有数据都在df1中,并且不需要合并。
m = list(DFF['prodcode'].loc[DFF['sentiment'] == 0] # create a list matching your criteria
df.loc[(df['0'] > 40) & (df['sentiment'].isin(m)] # filter according to your conditions
答案 1 :(得分:0)
我知道了:
DF3 = pd.merge(DFF, df1, left_on='prodcode', right_on='prodcode')
print(DF3.loc[(DF3['0'] > 50.0) & (DF3['2'] < 50.0) & (DF3['sentiment'].isin(['0']))].sort_values('0', ascending=False))