我们说我有下表:
+--------------------+--------------------+------+------------+--------------------+
| host| path|status|content_size| time|
+--------------------+--------------------+------+------------+--------------------+
|js002.cc.utsunomi...|/shuttle/resource...| 404| 0|1995-08-01 00:07:...|
| tia1.eskimo.com |/pub/winvn/releas...| 404| 0|1995-08-01 00:28:...|
|grimnet23.idirect...|/www/software/win...| 404| 0|1995-08-01 00:50:...|
|miriworld.its.uni...|/history/history.htm| 404| 0|1995-08-01 01:04:...|
| ras38.srv.net |/elv/DELTA/uncons...| 404| 0|1995-08-01 01:05:...|
| cs1-06.leh.ptd.net | | 404| 0|1995-08-01 01:17:...|
|dialip-24.athenet...|/history/apollo/a...| 404| 0|1995-08-01 01:33:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:35:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:36:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:36:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:36:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:36:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:36:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:36:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:37:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:37:...|
| h96-158.ccnet.com |/history/apollo/a...| 404| 0|1995-08-01 01:37:...|
|hsccs_gatorbox07....|/pub/winvn/releas...| 404| 0|1995-08-01 01:44:...|
|www-b2.proxy.aol....|/pub/winvn/readme...| 404| 0|1995-08-01 01:48:...|
|www-b2.proxy.aol....|/pub/winvn/releas...| 404| 0|1995-08-01 01:48:...|
+--------------------+--------------------+------+------------+--------------------+
我如何过滤此表以在PySpark中只有不同的路径? 但该表应包含所有列。
答案 0 :(得分:15)
如果要保存特定列中所有值不同的行,则必须在DataFrame上调用dropDuplicates
方法。
在我的例子中就像这样:
dataFrame = ...
dataFrame.dropDuplicates(['path'])
其中路径是列名
答案 1 :(得分:0)
对于调整保留和丢弃哪些记录,如果可以将条件放入Window表达式中,则可以使用类似的内容。这是在scala中(或多或少),但是我想您也可以在PySpark中做到这一点。
val window = Window.parititionBy('columns,'to,'make,'unique).orderBy('conditionToPutRowToKeepFirst)
dataframe.withColumn(“ row_number”,row_number()。over(window))。where('row_number === 1).drop('row_number)