在libsvm中训练单个模型时,如何解释/解释获得多个输出块?

时间:2019-04-15 17:17:27

标签: machine-learning svm libsvm multiclass-classification

我正在使用libsvm-3.23来训练数据集并使用默认设置生成模型而不使用任何参数,我也想了解此阶段的输出,但是我不知道如何解释我在这里得到什么...

...................
WARNING: using -h 0 may be faster
*.
WARNING: using -h 0 may be faster
*..
WARNING: using -h 0 may be faster
*.
WARNING: using -h 0 may be faster
*
optimization finished, #iter = 21791
nu = 0.550424
obj = -32123.272387, rho = -3.742414
nSV = 33351, nBSV = 33314
.........
WARNING: using -h 0 may be faster
*.
WARNING: using -h 0 may be faster
*.
WARNING: using -h 0 may be faster
*
optimization finished, #iter = 10486
nu = 0.434844
obj = -15950.193731, rho = -7.014801
nSV = 17162, nBSV = 17118
..............
WARNING: using -h 0 may be faster
*.
WARNING: using -h 0 may be faster
*.
WARNING: using -h 0 may be faster
*
optimization finished, #iter = 15241
nu = 0.431166
obj = -23998.956921, rho = -7.981013
nSV = 24883, nBSV = 24833
Total nSV = 51020

使用此命令:./svm-train acoustic_scale

数据集是(SensIT Vehicle (acoustic))。

培训生成了多个输出块,但是我不明白在那里实际发生的情况,例如,在使用数据集heart_scalelibsvm附带的轻量级数据集)时,{ {1}}仅生成一块输出,如下所示:

./svm-train

我使用的给出此输出的命令是* optimization finished, #iter = 162 nu = 0.431029 obj = -100.877288, rho = 0.424462 nSV = 132, nBSV = 107 Total nSV = 132

您可以看到差异,./svm-train heart_scale数据集会生成SensIT Vehicle (acoustic)行3次,我不太了解这是如何发生的,以及什么会影响“块的数量“ 已生成...(按块,我的意思是一组与训练后的模型有关的信息,它们以"optimization finished, #iters = X"行开始,以"optimization finished, #iters = Y"结尾),更有趣的是,这些值"nSV = XX, nBSV = YY"#itersnu等的每次都不同,对此有解释吗?

0 个答案:

没有答案