卡方分析-预期频率在(0,)处具有零元素。错误

时间:2019-04-15 12:31:14

标签: python machine-learning scipy statistics chi-squared

我正在研究试图查看两个变量之间的关联的数据,并在Python的Scipy包中使用了卡方分析。

这是两个变量的交叉表结果:

pd.crosstab(data['loan_default'],data['id_proofs'])

结果:

   id_proofs    2   3   4   5
  loan_default              
    0   167035  15232   273 3
    1   46354   4202    54  1

如果我在相同的数据上应用卡方,则会看到一个错误,提示ValueError:内部计算的期望频率表在(0,)处有一个零元素。

代码:

from scipy.stats import chi2_contingency
stat,p,dof,expec = chi2_contingency(data['loan_default'],data['id_proofs'])
print(stat,p,dof,expec)

错误报告:

    ---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-154-63c6f49aec48> in <module>()
      1 from scipy.stats import chi2_contingency
----> 2 stat,p,dof,expec = chi2_contingency(data['loan_default'],data['id_proofs'])
      3 print(stat,p,dof,expec)

~/anaconda3/lib/python3.6/site-packages/scipy/stats/contingency.py in chi2_contingency(observed, correction, lambda_)
    251         zeropos = list(zip(*np.where(expected == 0)))[0]
    252         raise ValueError("The internally computed table of expected "
--> 253                          "frequencies has a zero element at %s." % (zeropos,))
    254 
    255     # The degrees of freedom

ValueError: The internally computed table of expected frequencies has a zero element at (0,).

该问题可能是什么原因?我该如何克服?

1 个答案:

答案 0 :(得分:1)

再看看chi2_contingency的文档字符串。第一个参数observed必须是列联表。您必须计算列联表(就像对pd.crosstab(data['loan_default'],data['id_proofs'])所做的一样)并将其传递给chi2_contingency