使用熊猫标记groupby DataFrame中的更改列

时间:2019-04-13 12:26:29

标签: python pandas dataframe

这是数据集:

>>> df = pd.DataFrame({'id_police':['p123','p123','p123','b123','b123'],
                   'date':['24/01/2017','24/11/2017','25/02/2018','24/02/2018','24/03/2018'],
                   'prime':[0,0,10,20,30],
                   'prime2':[0,30,10,20,0],
})
###
  id_police        date  prime  prime2
0      p123  24/01/2017      0       0
1      p123  24/11/2017      0      30
2      p123  25/02/2018     10      10
3      b123  24/02/2018     20      20
4      b123  24/03/2018     30       0

这是我使用@Erfan的工作解决方案时得到的结果:

  id_police        date  prime  prime2  changed
0      p123  24/01/2017      0       0<-      0
1      p123  24/11/2017      0<-    30<-      1
2      p123  25/02/2018     10<-    10        1
3      b123  24/02/2018     20      20        0
4      b123  24/03/2018     30       0        0

命令:

df['changed'] = (df[['prime', 'prime2']].shift().eq(0).any(axis=1) & df[['prime', 'prime2']].ne(0).any(axis=1)).astype(int)

现在,我想将其应用于每个id_police,例如添加groupby之类的东西……谢谢您的帮助!

2 个答案:

答案 0 :(得分:1)

我们可以访问groupby object中的groupid和group,然后在每次迭代中创建changed列:

groups = []
for _, grp in df.groupby('id_police'):
    grp['changes'] = (grp[['prime', 'prime2']].shift().eq(0).any(axis=1) & grp[['prime', 'prime2']].ne(0).any(axis=1)).astype(int)
    groups.append(grp)

df_final = pd.concat(groups).sort_index()

哪个产量

print(df_final)
  id_police        date  prime  prime2  changes
0      p123  24/01/2017      0       0        0
1      p123  24/11/2017      0      30        1
2      p123  25/02/2018     10      10        1
3      b123  24/02/2018     20      20        0
4      b123  24/03/2018     30       0        0

如果要关闭SetCopyWarning,请使用以下命令:

pd.options.mode.chained_assignment = None

答案 1 :(得分:1)

根据您的命令:

cols = ['prime', 'prime2']

df['changed'] = (df.groupby('id_police', sort=False, as_index=False)
                   .apply(lambda x: (x[cols].ne(0) & x[cols].shift(1).eq(0))
                   .any(axis=1).astype(int))
                   .reset_index(drop=True))
df

  id_police        date  prime  prime2  changed
0      p123  24/01/2017      0       0        0
1      p123  24/11/2017      0      30        1
2      p123  25/02/2018     10      10        1
3      b123  24/02/2018     20      20        0
4      b123  24/03/2018     30       0        0

groupbyapply结合使用以在每个组上应用功能。并将sort=False设置为与主df顺序相同。