大家好,我有以下数据框:
Fruit metric
0 Apple NaN
1 Apple 100.0
2 Apple NaN
3 Peach 70.0
4 Pear 120.0
5 Pear 100.0
6 Pear NaN
我的目标是按果实分组,然后按顺序将非空的metric
的每个值添加到累积列表中,如下所示:
Fruit metric metric_cum
0 Apple NaN []
1 Apple 100.0 [100]
2 Apple NaN [100]
3 Peach 70.0 [70]
4 Pear 120.0 [120]
5 Pear 100.0 [120, 100]
6 Pear NaN [120, 100]
我试过这样做:
df['metric1'] = df['metric'].astype(str)
df.groupby('Fruit')['metric1'].cumsum()
但这导致DataError: No numeric types to aggregate
。
我也试过这样做:
df.groupby('Fruit')['metric'].apply(list)
导致:
Fruit
Apple [nan, 100.0, nan]
Peach [70.0]
Pear [120.0, 100.0, nan]
Name: metric, dtype: object
但这不是累积的,也不能成为一个专栏。 谢谢你的帮助
答案 0 :(得分:5)
使用:
df['metric'] = df['metric'].apply(lambda x: [] if pd.isnull(x) else [int(x)])
df['metric_cum'] = df.groupby('Fruit')['metric'].apply(lambda x: x.cumsum())
print (df)
Fruit metric metric_cum
0 Apple [] []
1 Apple [100] [100]
2 Apple [] [100]
3 Peach [70] [70]
4 Pear [120] [120]
5 Pear [100] [120, 100]
6 Pear [] [120, 100]
或者:
a = df['metric'].apply(lambda x: [] if pd.isnull(x) else [int(x)])
df['metric_cum'] = a.groupby(df['Fruit']).apply(lambda x: x.cumsum())
print (df)
Fruit metric metric_cum
0 Apple NaN []
1 Apple 100.0 [100]
2 Apple NaN [100]
3 Peach 70.0 [70]
4 Pear 120.0 [120]
5 Pear 100.0 [120, 100]
6 Pear NaN [120, 100]
答案 1 :(得分:2)
f = lambda x: pd.Series(x).dropna().astype(int).tolist()
c = pd.Series.cumsum
df.assign(metric_cum=df.metric.apply(f).groupby(df.Fruit).apply(c))
Fruit metric metric_cum
0 Apple NaN []
1 Apple 100.0 [100]
2 Apple NaN [100]
3 Peach 70.0 [70]
4 Pear 120.0 [120]
5 Pear 100.0 [120, 100]
6 Pear NaN [120, 100]