求解非线性方程:为吉布斯自由能问题添加约束

时间:2019-04-09 19:00:57

标签: python numpy scipy nonlinear-optimization chemistry

我正在尝试求解一个非线性系统,该系统将使用带指数公式的Lagrange方法最小化吉布斯自由能。 这些方程式已经具有指数形式Y1...Y6的拉格朗日方程,随后将其转换为化学物种n1...n9的摩尔数。

问题是fsolve()给出的答案相差很大,即使以相同的猜测重新运行该问题,它也会给出不同的值。 但是主要的问题是,我用不同的猜测得出的所有解决方案都没有物理意义,因为将Y s转换为n s后,质量得到了负值。

因此,根据所涉及的物理学,我可以确定所有[n1...n9] >= 0。也可以确定[n1...n9]的所有最大值。

如何将其添加到代码中?

import numpy as np
import scipy
from scipy.optimize import fsolve
import time
#
# "B" is the energy potentials of the species [C_gr , CO , CO2 , H2 , CH4 , H2O , N2* , SiO2* , H2S]
B = [-11.0, -309.3632404425132, -613.3667287153355, -135.61840658777166, -269.52018727412405, -434.67499662354476, -193.0773646004259, -980.0, -230.02942769438977]
# "a_atoms" is the number of atoms in the reactants [C, H, O, N*, S, SiO2*]  
# * Elements that doesn't react. '
a_atoms = [4.27311296e-02, 8.10688756e-02, 6.17738749e-02, 1.32864225e-01, 3.18931655e-05, 3.74477901e-04]
P_zero = 100.0 # Standard energy pressure
P_eq = 95.0 # Reaction pressure
# Standard temperature 298.15K, reaction temperature 940K.
#
start_time = time.time()
def GibbsEq(z):
# Lambda's exponentials:
    Y1 = z[0]
    Y2 = z[1] 
    Y3 = z[2]
    Y4 = z[3] 
    Y5 = z[4] 
    Y6 = z[5]
# Number of moles in each phase:
    N1 = z[6]
    N2 = z[7]
    N3 = z[8]
# Equations of energy conservation and mass conservation:
    F = np.zeros(9) 
    F[0] = (P_zero/P_eq) * N1 * ((B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[4] * (Y1 * Y2**2)) + N2 * (B[0] * Y1)) - a_atoms[0]
    F[1] = (P_zero/P_eq) * N1 * (2 * B[3] * Y2**2 + 4 * B[4] * (Y1 * Y2**4) + 2 * B[5] * ((Y2**2) * Y3) + 2 * B[8] * ((Y2**2) * Y5)) - a_atoms[1]
    F[2] = (P_zero/P_eq) * N1 * (B[1] * (Y1 * Y3) + 2 * B[2] * (Y1 * Y3**2) + B[5] * ((Y2**2) * Y3)) - a_atoms[2]
    F[3] = (P_zero/P_eq) * N1 * (2 * B[6]**2) - a_atoms[3]
    F[4] = (P_zero/P_eq) * N1 * (B[8] * ((Y2**2) * Y5)) - a_atoms[4]
    F[5] = N3 * (B[7] * Y5)  - a_atoms[5]
# 
    F[6] = (P_zero/P_eq) * (B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[3] * Y2**2 + B[4] * (Y1 * Y2**4) + B[5] * ((Y2**2) * Y3) + B[6] * Y4 + B[8] * Y5) - 1 
    F[7] = B[0] * Y1 - 1 
    F[8] = B[7] * Y6 - 1
    return F
#
zGuess = np.ones(9)
z = scipy.optimize.fsolve(GibbsEq, zGuess)
end_time = time.time()
time_solution = (end_time - start_time)
print('Solving time: {} s'.format(time_solution))
#
n1 = z[7] * B[0] * z[0]
n2 = z[6] * B[1] * z[0] * z[2]
n3 = z[6] * B[2] * z[0] * z[2]**2
n4 = z[6] * B[3] * z[1]**2
n5 = z[6] * B[4] * z[0] * z[1]**4
n6 = z[6] * B[5] * z[1]**2 * z[4]
n7 = z[6] * B[6] * z[3]**2
n8 = z[8] * B[7] * z[5]
n9 = z[6] * B[8] * z[1]**2 * z[4]
N_T = [n1, n2, n3, n4, n5, n6, n7, n8, n9]
print(z)
print(z[6],z[7],z[8])
print(N_T)
for n in N_T:
    if n < 0:
        print('Error: there is negative values for mass in the solution!')
        break
  1. 如何在fsolve中添加约束?
  2. python中是否还有其他求解器具有更多的约束选项来获得稳定性和初始猜测的更多独立性?

谢谢!

1 个答案:

答案 0 :(得分:1)

两个问题都有一个答案。

fsolve不支持约束。您可以提供初始估计值作为正值,但这不能保证有正数根。 但是,您可以将问题重新定义为优化问题,并使用诸如scipy.optimize.minimize之类的任何优化函数来最小化施加约束的成本函数。

作为一个最小的示例,如果要查找方程x * x -4的正根,可以执行以下操作。

scipy.optimize.minimize(lambda x:(x*x-4)**2,x0= [5], bounds =((0,None),))

采用{min,max)对的bounds参数可用于在根上施加正约束。

输出:

 fun: array([1.66882981e-17])
 hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>
      jac: array([1.27318954e-07])
  message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
     nfev: 20
      nit: 9
   status: 0
  success: True
        x: array([2.])

通过此操作,可以如下修改您的代码。只需添加边界,更改函数return语句,然后使用fsolvescipy.optimize.minimize更改为bounds

import numpy as np
import scipy
from scipy.optimize import fsolve
import time
#
# "B" is the energy potentials of the species [C_gr , CO , CO2 , H2 , CH4 , H2O , N2* , SiO2* , H2S]
B = [-11.0, -309.3632404425132, -613.3667287153355, -135.61840658777166, -269.52018727412405, -434.67499662354476, -193.0773646004259, -980.0, -230.02942769438977]
# "a_atoms" is the number of atoms in the reactants [C, H, O, N*, S, SiO2*]  
# * Elements that doesn't react. '
a_atoms = [4.27311296e-02, 8.10688756e-02, 6.17738749e-02, 1.32864225e-01, 3.18931655e-05, 3.74477901e-04]
P_zero = 100.0 # Standard energy pressure
P_eq = 95.0 # Reaction pressure
# Standard temperature 298.15K, reaction temperature 940K.
#
start_time = time.time()
def GibbsEq(z):
# Lambda's exponentials:
    Y1 = z[0]
    Y2 = z[1] 
    Y3 = z[2]
    Y4 = z[3] 
    Y5 = z[4] 
    Y6 = z[5]
# Number of moles in each phase:
    N1 = z[6]
    N2 = z[7]
    N3 = z[8]

    bounds =((0,None),)*9
# Equations of energy conservation and mass conservation:
    F = np.zeros(9) 
    F[0] = (P_zero/P_eq) * N1 * ((B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[4] * (Y1 * Y2**2)) + N2 * (B[0] * Y1)) - a_atoms[0]
    F[1] = (P_zero/P_eq) * N1 * (2 * B[3] * Y2**2 + 4 * B[4] * (Y1 * Y2**4) + 2 * B[5] * ((Y2**2) * Y3) + 2 * B[8] * ((Y2**2) * Y5)) - a_atoms[1]
    F[2] = (P_zero/P_eq) * N1 * (B[1] * (Y1 * Y3) + 2 * B[2] * (Y1 * Y3**2) + B[5] * ((Y2**2) * Y3)) - a_atoms[2]
    F[3] = (P_zero/P_eq) * N1 * (2 * B[6]**2) - a_atoms[3]
    F[4] = (P_zero/P_eq) * N1 * (B[8] * ((Y2**2) * Y5)) - a_atoms[4]
    F[5] = N3 * (B[7] * Y5)  - a_atoms[5]
# 
    F[6] = (P_zero/P_eq) * (B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[3] * Y2**2 + B[4] * (Y1 * Y2**4) + B[5] * ((Y2**2) * Y3) + B[6] * Y4 + B[8] * Y5) - 1 
    F[7] = B[0] * Y1 - 1 
    F[8] = B[7] * Y6 - 1
    return (np.sum(F)**2)
#
zGuess = np.ones(9)
z = scipy.optimize.minimize(GibbsEq, zGuess , bounds=bounds)
end_time = time.time()
time_solution = (end_time - start_time)
print('Solving time: {} s'.format(time_solution))
#

print(z.x)

print(N_T)
for n in N_T:
    if n < 0:
        print('Error: there is negative values for mass in the solution!')
        break 

输出:

Solving time: 0.012451648712158203 s
[1.47559173 2.09905553 1.71722403 1.01828262 1.17529548 1.08815712
 1.00294916 1.00104157 1.08815763]