我正在尝试求解一个非线性系统,该系统将使用带指数公式的Lagrange方法最小化吉布斯自由能。
这些方程式已经具有指数形式Y1...Y6
的拉格朗日方程,随后将其转换为化学物种n1...n9
的摩尔数。
问题是fsolve()
给出的答案相差很大,即使以相同的猜测重新运行该问题,它也会给出不同的值。
但是主要的问题是,我用不同的猜测得出的所有解决方案都没有物理意义,因为将Y
s转换为n
s后,质量得到了负值。
因此,根据所涉及的物理学,我可以确定所有[n1...n9] >= 0
。也可以确定[n1...n9]
的所有最大值。
如何将其添加到代码中?
import numpy as np
import scipy
from scipy.optimize import fsolve
import time
#
# "B" is the energy potentials of the species [C_gr , CO , CO2 , H2 , CH4 , H2O , N2* , SiO2* , H2S]
B = [-11.0, -309.3632404425132, -613.3667287153355, -135.61840658777166, -269.52018727412405, -434.67499662354476, -193.0773646004259, -980.0, -230.02942769438977]
# "a_atoms" is the number of atoms in the reactants [C, H, O, N*, S, SiO2*]
# * Elements that doesn't react. '
a_atoms = [4.27311296e-02, 8.10688756e-02, 6.17738749e-02, 1.32864225e-01, 3.18931655e-05, 3.74477901e-04]
P_zero = 100.0 # Standard energy pressure
P_eq = 95.0 # Reaction pressure
# Standard temperature 298.15K, reaction temperature 940K.
#
start_time = time.time()
def GibbsEq(z):
# Lambda's exponentials:
Y1 = z[0]
Y2 = z[1]
Y3 = z[2]
Y4 = z[3]
Y5 = z[4]
Y6 = z[5]
# Number of moles in each phase:
N1 = z[6]
N2 = z[7]
N3 = z[8]
# Equations of energy conservation and mass conservation:
F = np.zeros(9)
F[0] = (P_zero/P_eq) * N1 * ((B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[4] * (Y1 * Y2**2)) + N2 * (B[0] * Y1)) - a_atoms[0]
F[1] = (P_zero/P_eq) * N1 * (2 * B[3] * Y2**2 + 4 * B[4] * (Y1 * Y2**4) + 2 * B[5] * ((Y2**2) * Y3) + 2 * B[8] * ((Y2**2) * Y5)) - a_atoms[1]
F[2] = (P_zero/P_eq) * N1 * (B[1] * (Y1 * Y3) + 2 * B[2] * (Y1 * Y3**2) + B[5] * ((Y2**2) * Y3)) - a_atoms[2]
F[3] = (P_zero/P_eq) * N1 * (2 * B[6]**2) - a_atoms[3]
F[4] = (P_zero/P_eq) * N1 * (B[8] * ((Y2**2) * Y5)) - a_atoms[4]
F[5] = N3 * (B[7] * Y5) - a_atoms[5]
#
F[6] = (P_zero/P_eq) * (B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[3] * Y2**2 + B[4] * (Y1 * Y2**4) + B[5] * ((Y2**2) * Y3) + B[6] * Y4 + B[8] * Y5) - 1
F[7] = B[0] * Y1 - 1
F[8] = B[7] * Y6 - 1
return F
#
zGuess = np.ones(9)
z = scipy.optimize.fsolve(GibbsEq, zGuess)
end_time = time.time()
time_solution = (end_time - start_time)
print('Solving time: {} s'.format(time_solution))
#
n1 = z[7] * B[0] * z[0]
n2 = z[6] * B[1] * z[0] * z[2]
n3 = z[6] * B[2] * z[0] * z[2]**2
n4 = z[6] * B[3] * z[1]**2
n5 = z[6] * B[4] * z[0] * z[1]**4
n6 = z[6] * B[5] * z[1]**2 * z[4]
n7 = z[6] * B[6] * z[3]**2
n8 = z[8] * B[7] * z[5]
n9 = z[6] * B[8] * z[1]**2 * z[4]
N_T = [n1, n2, n3, n4, n5, n6, n7, n8, n9]
print(z)
print(z[6],z[7],z[8])
print(N_T)
for n in N_T:
if n < 0:
print('Error: there is negative values for mass in the solution!')
break
fsolve
中添加约束?谢谢!
答案 0 :(得分:1)
两个问题都有一个答案。
fsolve
不支持约束。您可以提供初始估计值作为正值,但这不能保证有正数根。
但是,您可以将问题重新定义为优化问题,并使用诸如scipy.optimize.minimize
之类的任何优化函数来最小化施加约束的成本函数。
作为一个最小的示例,如果要查找方程x * x -4的正根,可以执行以下操作。
scipy.optimize.minimize(lambda x:(x*x-4)**2,x0= [5], bounds =((0,None),))
采用{min,max)对的bounds
参数可用于在根上施加正约束。
输出:
fun: array([1.66882981e-17])
hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>
jac: array([1.27318954e-07])
message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
nfev: 20
nit: 9
status: 0
success: True
x: array([2.])
通过此操作,可以如下修改您的代码。只需添加边界,更改函数return
语句,然后使用fsolve
将scipy.optimize.minimize
更改为bounds
。
import numpy as np
import scipy
from scipy.optimize import fsolve
import time
#
# "B" is the energy potentials of the species [C_gr , CO , CO2 , H2 , CH4 , H2O , N2* , SiO2* , H2S]
B = [-11.0, -309.3632404425132, -613.3667287153355, -135.61840658777166, -269.52018727412405, -434.67499662354476, -193.0773646004259, -980.0, -230.02942769438977]
# "a_atoms" is the number of atoms in the reactants [C, H, O, N*, S, SiO2*]
# * Elements that doesn't react. '
a_atoms = [4.27311296e-02, 8.10688756e-02, 6.17738749e-02, 1.32864225e-01, 3.18931655e-05, 3.74477901e-04]
P_zero = 100.0 # Standard energy pressure
P_eq = 95.0 # Reaction pressure
# Standard temperature 298.15K, reaction temperature 940K.
#
start_time = time.time()
def GibbsEq(z):
# Lambda's exponentials:
Y1 = z[0]
Y2 = z[1]
Y3 = z[2]
Y4 = z[3]
Y5 = z[4]
Y6 = z[5]
# Number of moles in each phase:
N1 = z[6]
N2 = z[7]
N3 = z[8]
bounds =((0,None),)*9
# Equations of energy conservation and mass conservation:
F = np.zeros(9)
F[0] = (P_zero/P_eq) * N1 * ((B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[4] * (Y1 * Y2**2)) + N2 * (B[0] * Y1)) - a_atoms[0]
F[1] = (P_zero/P_eq) * N1 * (2 * B[3] * Y2**2 + 4 * B[4] * (Y1 * Y2**4) + 2 * B[5] * ((Y2**2) * Y3) + 2 * B[8] * ((Y2**2) * Y5)) - a_atoms[1]
F[2] = (P_zero/P_eq) * N1 * (B[1] * (Y1 * Y3) + 2 * B[2] * (Y1 * Y3**2) + B[5] * ((Y2**2) * Y3)) - a_atoms[2]
F[3] = (P_zero/P_eq) * N1 * (2 * B[6]**2) - a_atoms[3]
F[4] = (P_zero/P_eq) * N1 * (B[8] * ((Y2**2) * Y5)) - a_atoms[4]
F[5] = N3 * (B[7] * Y5) - a_atoms[5]
#
F[6] = (P_zero/P_eq) * (B[1] * (Y1 * Y3) + B[2] * (Y1 * Y3**2) + B[3] * Y2**2 + B[4] * (Y1 * Y2**4) + B[5] * ((Y2**2) * Y3) + B[6] * Y4 + B[8] * Y5) - 1
F[7] = B[0] * Y1 - 1
F[8] = B[7] * Y6 - 1
return (np.sum(F)**2)
#
zGuess = np.ones(9)
z = scipy.optimize.minimize(GibbsEq, zGuess , bounds=bounds)
end_time = time.time()
time_solution = (end_time - start_time)
print('Solving time: {} s'.format(time_solution))
#
print(z.x)
print(N_T)
for n in N_T:
if n < 0:
print('Error: there is negative values for mass in the solution!')
break
输出:
Solving time: 0.012451648712158203 s
[1.47559173 2.09905553 1.71722403 1.01828262 1.17529548 1.08815712
1.00294916 1.00104157 1.08815763]