我一直在做离散的结构,学习真理的证明和排序(ETC.((A→B)∨B)→C,(¬p→q)⊕¬q等,可以知道它们是如何工作的以及如何工作得出答案,但是最近类似的事情
A→B
B→C A∨¬B
B ¬A
____ ____
A→C ????
???
已经出现,我无法在Google上找到有关该格式或如何解决该问题的任何信息,也没有得到有关该格式以及如何解决它的任何信息,因此它是新的,我不知道该如何处理。我发现最接近相似来源的是有关计算,自动机和代数教科书的Google书籍,这些书籍似乎将它们称为矩阵。我尝试单独制作每个真值表,但找不到链接它的模式。
对于如何处理此类证明的资料或示例,我们表示赞赏。我以前从未遇到过这种布局,我很可能只是以一种新格式知道了一些东西。感谢您提前提供任何相关帮助。
答案 0 :(得分:1)
There are two ways to prove things in logic:
You are used to approach 1. It is easy to understand and concrete. Approach 2 is more abstract and more difficult. To execute proofs in a proof system, you must first fix the proof system. This means declaring some axioms and rules of logical deduction.
For instance, a simple system can be found here:
In this system, your proof might look like this:
1. A→B, B→C, B | (A→(B→C))→((A→B)→(A→C)) (2)
2. A→B, B→C, B | (B→C)→(A→(B→C)) (1)
3. A→B, B→C, B | A→(B→C) MP on 2. and hypothesis B→C
4. A→B, B→C, B | (A→B)→(A→C) MP on 1. and 3.
5. A→B, B→C, B | A→C MP on 4. and hypothesis A→B
At each step, you either introduce a new instance of one of your axioms or you apply your rule of deduction to produce a new line. From then on, you can use the lines so derived to derive new lines, until you derive the intended result.
Your second one doesn't make a lot of sense since you can't prove something that hasn't been claimed. If you get something like that I suggest you just fill in the blank with something easy to prove, like true
, and then state true
in the proof and be done with it.