这是我的代码:
Double[] x = {1.0, 2.0, 3.0};
Double[] fx = {1.0, 8.0, 27.0};
s = x.length;
Double[][] newton = new Double[(2*s)-1][s+1];
for(int i=0, z=0;i<s;i++,z+=2){
newton[z][0]=x[i];
newton[z][1]=fx[i];
}
int i=1, ii=2, j=2, ss=s;
for(int z=0;z<s-1;z++,j++,ss-=1,ii++){
for(int y=0;y<ss-1;y++,i+=2){
newton[i][j]=(newton[i+1][j-1]-newton[i-1][j-1])/(newton[i+(ii-1)][0]-newton[i-(ii-1)][0]);
}
i=ii;
}
}
抱歉丑陋的代码。给定x points = {1,2,3}和f(x)= {1,8,27},上面的代码将生成一个二维数组,如下所示:
1.0 1.0
7.0
2.0 8.0 6.0
19.0
3.0 27.0
这是一个划分的差异表。
然后,我想生成其插值多项式函数。因此,在上面的例子中,使用牛顿多项式规则,输出函数应为1 + 7(x-1)+ 6(x-1)(x-2)= 6x ^ 2-11x + 6 。我真的坚持这个,任何人都可以帮助我如何产生这样的输出吗?
答案 0 :(得分:0)
根据我从newtonian interpolation可以理解的,从你的分歧差异和你的x位置,你想要牛顿多项式的系数,对吧? 这是一个应该做的小事:
public class PolynomProduct {
public static void main(String[] args) {
double[] values = {1.0, 2.0, 3.0};
double[] diffs = {1.0, 7.0, 6.0};
// Initialize result array
double[] result = new double[values.length];
for (int i = 0; i < values.length; ++i) {
result[i] = 0.0;
}
for (int i = 0; i < values.length; ++i) {
// 'poly' has a degree 'i'. We use 'i - 1' because only terms
// from 0 to 'i - 1' are used
double[] poly = getPoly(values, i - 1);
// Now add to result, do not forget to multiply by the divided
// difference !
for (int j = 0; j < poly.length; ++j) {
result[j] += poly[j] * diffs[i];
}
}
for (int i = 0; i < result.length; ++i) {
System.out.println("Coef for x^" + i + " is: " + result[i]);
}
}
public static double[] getPoly(double[] values, int i) {
// Start poly: 1.0, neutral value for multiplication
double[] coefs = {1.0};
// Accumulate values of products
for (int j = 0; j <= i; ++j) {
// 'coefsLocal' represent polynom of 1st degree (x - values[j])
double[] coefsLocal = {-values[j], 1.0};
coefs = getPolyProduct(coefs, coefsLocal);
}
return coefs;
}
public static double[] getPolyProduct(double[] coefs1, double[] coefs2) {
// Get lengths and degree
int s1 = coefs1.length - 1;
int s2 = coefs2.length - 1;
int degree = s1 + s2;
// Initialize polynom resulting from product, with null values
double[] coefsProduct = new double[degree + 1];
for (int k = 0; k <= degree; ++k) {
coefsProduct[k] = 0.0;
}
// Compute products
for (int i = 0; i <= s1; ++i) {
for (int j = 0; j <= s2; ++j) {
coefsProduct[i + j] += coefs1[i] * coefs2[j];
}
}
return coefsProduct;
}
}
它通过双精度数组表示多项式:{1.0, 3.0, -2.0}
表示1 + 3x -2x^2
。这简化了计算(特别是多项式乘积)。
执行给出:
Coef for x^0 is: 6.0
Coef for x^1 is: -11.0
Coef for x^2 is: 6.0
这是你期望的多项式6 - 11x + 6x^2
。