我正在尝试获取图层的权重。当使用keras层并将输入连接到它时,它似乎可以正常工作。 但是,当将其包装到我的自定义层中时,它将不再起作用。那是错误还是我想念的东西?
编辑:注意事项:
我读到可以在自定义层的build()中定义可训练的变量。但是,由于自定义层由密集的keras层(以及稍后可能的更多keras层)组成,因此这些层应该已经定义了可训练变量和weight / bias初始值设定项。 (在TestLayer的 init ()中,我看不到用将在TestLayer的build()中定义的变量覆盖它们的方法。
class TestLayer(layers.Layer):
def __init__(self):
super(TestLayer, self).__init__()
self.test_nn = layers.Dense(3)
def build(self, input_shape):
super(TestLayer, self).build(input_shape)
def call(self, inputs, **kwargs):
test_out = test_nn(inputs) # which is test_in
return test_out
test_in = layers.Input((2,))
test_nn = layers.Dense(3)
print(test_nn.get_weights()) # empty, since no connection to the layer
test_out = test_nn(test_in)
print(test_nn.get_weights()) # layer returns weights+biases
testLayer = TestLayer()
features = testLayer(test_in)
print(testLayer.get_weights()) # Problem: still empty, even though connected to input.
答案 0 :(得分:1)
不幸的是,Keras不支持在其他图层中使用图层。 我过去曾遇到此问题,并打开了一个问题here,但团队向我证实这是故意的。
您可以在自定义图层中定义一个方法,例如:
var mic = new Tone.UserMedia()
var animate = function(){
requestAnimationFrame(animate);
console.log(mic.volume);
或子类化Dense层,并使用def dense(X, f_in, f_out):
W = self.add_weight(name='kernel',
shape=(f_in, f_out))
b = self.add_weight(name='bias',
shape=(f_out, ))
return K.dot(X, W) + b
的输出。
答案 1 :(得分:1)
documentation说,build()
方法应该调用您没有的add_weight()
:
应该调用add_weight(),然后调用上级的build()
如果您要继承layers.Layer
,则也无需在类内部定义密集层。
这是您应该如何子类化:
import tensorflow as tf
from tensorflow.keras import layers
class TestLayer(layers.Layer):
def __init__(self, outshape=3):
super(TestLayer, self).__init__()
self.outshape = outshape
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel',
shape=(int(input_shape[1]), self.outshape),
trainable=True)
super(TestLayer, self).build(input_shape)
def call(self, inputs, **kwargs):
return tf.matmul(inputs, self.kernel)
test_in = layers.Input((2,))
testLayer = TestLayer()
features = testLayer(test_in)
print(testLayer.get_weights())
#[array([[-0.68516827, -0.01990592, 0.88364804],
# [-0.459718 , 0.19161093, 0.39982545]], dtype=float32)]
Here是子类化Layer
类的更多示例。
但是,如果您坚持以自己的方式实现它,并且想要使用get_weights()
,则必须重写它(在这种情况下,您可以只创建一个没有子类的类):
import tensorflow as tf
from tensorflow.keras import layers
class TestLayer(layers.Layer):
def __init__(self, outshape=3):
super(TestLayer, self).__init__()
self.test_nn = layers.Dense(outshape)
self.outshape = outshape
def build(self, input_shape):
super(TestLayer, self).build(input_shape)
def call(self, inputs, **kwargs):
return self.test_nn(inputs)
def get_weights(self):
with tf.Session() as sess:
sess.run([x.initializer for x in self.test_nn.trainable_variables])
return sess.run(self.test_nn.trainable_variables)
test_in = layers.Input((2,))
testLayer = TestLayer()
features = testLayer(test_in)
print(testLayer.get_weights())
#[array([[ 0.5692867 , 0.726858 , 0.37790012],
# [ 0.2897135 , -0.7677493 , -0.58776844]], dtype=float32), #array([0., 0., 0.], dtype=float32)]