我正在尝试在kproto函数(R中的clustMixType包)中实现jaccard的距离,但是没有成功。目的是对我的数据集进行聚类分析。
我要使用的jaccard的距离是jaccard相似系数的补数,所以
distance of jaccard = 1-[a/(a+b+c)] = [(b+c)/(a+b+c)], or
distance of jaccard = 1-[M11/(M01+M10+M11)] = [(M01+M10)/(M01+M10+M11)].
下面介绍了kproto函数的源代码。变量d1是数字变量的欧式距离,变量d2是分类变量(作为因子)与简单匹配系数的距离。
它计算观测值和原型之间的距离,而不是观测值之间的距离。原型是经过计算的,而不是对自身数据集的观察。
所以我的两个问题是 1)d2是我要修改的内容,但是如何修改? 2)d1应该是正在计算的平方根吗?
感谢您的所有帮助。会很感动的。
这是我正在处理的数据集的摘录,其中V1至V4是因子(二进制)变量(以使用jaccard距离),而V5至V8是数值变量(以使用欧氏距离):>
V1;V2;V3;V4;V5;V6;V7;V8
1;1;0;0;6;2;3;3
0;1;0;1;3;5;2;1
1;1;0;0;1;3;2;1
1;1;0;0;4;3;3;1
1;1;1;0;1;4;1;1
1;0;1;0;4;3;1;1
1;1;0;0;2;4;2;1
1;1;0;0;2;4;2;1
1;1;0;0;6;2;1;1
1;1;0;0;6;2;2;1
1;1;0;0;5;2;3;1
1;1;0;0;4;3;3;1
1;1;0;0;4;4;2;1
1;1;0;0;4;3;3;1
1;1;0;0;4;3;3;1
1;1;0;0;3;4;2;1
1;1;0;0;4;3;2;1
1;1;0;0;5;2;3;1
1;1;0;0;4;3;4;1
1;1;0;0;4;3;2;1
1;1;0;0;4;3;2;1
1;1;0;0;3;3;2;1
1;1;0;0;3;3;3;1
1;1;0;0;5;2;3;1
1;1;0;0;5;2;3;1
1;1;0;0;5;2;2;1
1;1;0;0;3;3;2;1
1;1;0;0;5;2;3;1
1;1;0;0;5;2;2;1
1;0;0;0;3;4;2;1
1;1;0;0;7;2;4;1
1;1;0;0;7;2;2;1
1;1;0;0;5;2;4;1
1;1;0;0;5;3;4;1
1;1;0;0;5;3;2;1
1;1;0;0;5;3;4;1
1;0;0;0;3;5;3;1
0;1;0;0;6;2;4;1
1;1;0;0;6;2;3;1
1;1;0;0;6;2;4;1
让我们以上面提供的数据集中的前两个观察为例:
V1;V2;V3;V4;V5;V6;V7;V8
1;1;0;0;6;2;3;3
0;1;0;1;3;5;2;1
该算法首先从数据集中随机选择k个原型,因此我们假设第二个观察结果是初始原型之一。据我了解,该算法最初会从提供的数据集中创建k个随机观测值,从而创建一个称为“ protos”的数据框,因此第二个观测值将是“ proto”数据框的一行。
用于聚类观察的组合距离将为d = d1 + lambda * d2。 Lambda也可以是每个变量的权重向量。 d是所提供的数据集中的观测值与最初使用k个随机观测值创建的“原型”矩阵之间的距离。
在这种情况下,考虑到出现的前两个观测,则观测值(yi)与原型(yk)之间的计算距离如下:
Euclidian for the numeric variables (V5 to V8):
d1=sum[(yij-ykj)^2]^0,5
where,
k=1 to k clusters
i=1 to n observations
j=5 to 8 th variable
d1=[[(6-3)^2]+[(2-5)^2]+[(3-2)^2]+[(3-1)^2]]^0,5
d1=[9+9+1+4]^0,5
d1=4.796
Jaccard, for the set of binary variables (V1 to V4):
d2=[(b+c)/(a+b+c)]
where,
a=1
b=1
c=1
are correspondences counts between the n observations and the k prototypes, for variables 1 to 4.
d2=[(1+1)/(1+1+1)]
d2=2/3
d2=0.667
因此,该特定观测值与该星团的初始原型之间的总距离为:
d=d1+d2
d=4.796+0.667
d=5.463
据我所知,结果然后逐行存储在名为“ d”的矩阵中,其大小为[行数=观察数,列数=聚类数k]。
我希望能正确计算出欧几里得和雅克卡德的距离,修改kproto函数,并保持原始函数提供的步骤和结果。
注意:最终函数应可用于任何数量的观测值,变量和原型,而不仅适用于我的特定数据集。
我还尝试将kproto(clustMixType软件包)和dist.binary(ade4软件包)中的代码混合使用,但是它们以不同的方式工作。
#K-Prototypes algorithm
kproto.default <- function(x, k, lambda = NULL, iter.max = 100, nstart = 1, na.rm = TRUE, keep.data = TRUE, verbose = TRUE, ...){
# initial error checks
if(!is.data.frame(x)) stop("x should be a data frame!")
if(ncol(x) < 2) stop("For clustering x should contain at least two variables!")
if(iter.max < 1 | nstart < 1) stop("iter.max and nstart must not be specified < 1!")
if(!is.null(lambda)){
if(any(lambda < 0)) stop("lambda must be specified >= 0!")
if(!any(lambda > 0)) stop("lambda must be specified > 0 for at least one variable!")
}
# check for numeric and factor variables
numvars <- sapply(x, is.numeric)
anynum <- any(numvars)
catvars <- sapply(x, is.factor)
anyfact <- any(catvars)
if(!anynum) stop("\n No numeric variables in x! Try using kmodes() from package klaR...\n\n")
if(!anyfact) stop("\n No factor variables in x! Try using kmeans()...\n\n")
# treatment of missings
NAcount <- apply(x, 2, function(z) sum(is.na(z)))
if(verbose){
cat("# NAs in variables:\n")
print(NAcount)
}
if(any(NAcount == nrow(x))) stop(paste("Variable(s) have only NAs please remove them:",names(NAcount)[NAcount == nrow(x)],"!"))
if(na.rm) {
miss <- apply(x, 1, function(z) any(is.na(z)))
if(verbose){
cat(sum(miss), "observation(s) with NAs.\n")
if(sum(miss) > 0) message("Observations with NAs are removed.\n")
cat("\n")
}
x <- x[!miss,]
} # remove missings
if(!na.rm){
allNAs <- apply(x,1,function(z) all(is.na(z)))
if(sum(allNAs) > 0){
if(verbose) cat(sum(allNAs), "observation(s) where all variables NA.\n")
warning("No meaningful cluster assignment possible for observations where all variables NA.\n")
if(verbose) cat("\n")
}
}
if(nrow(x) == 1) stop("Only one observation clustering not meaningful.")
k_input <- k # store input k for nstart > 1 as clusters can be merged
# initialize prototypes
if(!is.data.frame(k)){
if (length(k) == 1){
if(as.integer(k) != k){k <- as.integer(k); warning(paste("k has been set to", k,"!"))}
if(nrow(x) < k) stop("Data frame has less observations than clusters!")
ids <- sample(nrow(x), k)
protos <- x[ids,]
}
if (length(k) > 1){
if(nrow(x) < length(k)) stop("Data frame has less observations than clusters!")
ids <- k
k <- length(ids)
if(length(unique(ids)) != length(ids)) stop("If k is specified as a vector it should contain different indices!")
if(any(ids<1)|any(ids>nrow(x))) stop("If k is specified as a vector all elements must be valid indices of x!")
#check for integer
protos <- x[ids,]
}
rm(ids)
}
if(is.data.frame(k)){
if(nrow(x) < nrow(k)) stop("Data frame has less observations than clusters!")
if(length(names(k)) != length(names(x))) stop("k and x have different numbers of columns!")
if(any(names(k) != names(x))) stop("k and x have different column names!")
if(anynum) {if( any(sapply(k, is.numeric) != numvars)) stop("Numeric variables of k and x do not match!")}
if(anyfact) {if( any(sapply(k, is.factor) != catvars)) stop("Factor variables of k and x do not match!")}
protos <- k
k <- nrow(protos)
}
if(k < 1) stop("Number of clusters k must not be smaller than 1!")
# automatic calculation of lambda
if(length(lambda) > 1) {if(length(lambda) != sum(c(numvars,catvars))) stop("If lambda is a vector, its length should be the sum of numeric and factor variables in the data frame!")}
if(is.null(lambda)){
if(anynum & anyfact){
vnum <- mean(sapply(x[,numvars, drop = FALSE], var, na.rm = TRUE))
vcat <- mean(sapply(x[,catvars, drop = FALSE], function(z) return(1-sum((table(z)/sum(!is.na(z)))^2))))
if (vnum == 0){
if(verbose) warning("All numerical variables have zero variance.")
anynum <- FALSE
}
if (vcat == 0){
if(verbose) warning("All categorical variables have zero variance.")
anyfact <- FALSE
}
if(anynum & anyfact){
lambda <- vnum/vcat
if(verbose) cat("Estimated lambda:", lambda, "\n\n")
}else{
lambda <- 1
}
}
}
# initialize clusters
clusters <- numeric(nrow(x))
tot.dists <- NULL
moved <- NULL
iter <- 1
# check for any equal prototypes and reduce cluster number in case of occurence
if(k > 1){
keep.protos <- rep(TRUE,k)
for(l in 1:(k-1)){
for(m in (l+1):k){
d1 <- sum((protos[l,numvars, drop = FALSE]-protos[m,numvars, drop = FALSE])^2) # euclidean for numerics
d2 <- sum(protos[l,catvars, drop = FALSE] != protos[m,catvars, drop = FALSE]) # wtd simple matching for categorics
if((d1+d2) == 0) keep.protos[m] <- FALSE
}
}
if(!all(keep.protos)){
protos <- protos[keep.protos,]
k <- sum(keep.protos)
if(verbose) message("Equal prototypes merged. Cluster number reduced to:", k, "\n\n")
}
}
# special case only one cluster
if(k == 1){clusters <- rep(1, nrow(x)); size <- table(clusters); iter <- iter.max} # REM: named vector size is needed later...
# start iterations for standard case (i.e. k > 1)
while(iter < iter.max){
# compute distances
nrows <- nrow(x)
dists <- matrix(NA, nrow=nrows, ncol = k)
for(i in 1:k){
#a0 <- proc.time()[3]
#d1 <- apply(x[,numvars],1, function(z) sum((z-protos[i,numvars])^2)) # euclidean for numerics
d1 <- (x[,numvars, drop = FALSE] - matrix(rep(as.numeric(protos[i, numvars, drop = FALSE]), nrows), nrow=nrows, byrow=T))^2
if(length(lambda) == 1) d1 <- rowSums(d1, na.rm = TRUE)
if(length(lambda) > 1) d1 <- as.matrix(d1) %*% lambda[numvars]
#a1 <- proc.time()[3]
#d2 <- lambda * apply(x[,catvars],1, function(z) sum((z != protos[i,catvars]))) # wtd simple matching for categorics
d2 <- sapply(which(catvars), function(j) return(x[,j] != rep(protos[i,j], nrows)) )
d2[is.na(d2)] <- FALSE
if(length(lambda) == 1) d2 <- lambda * rowSums(d2)
if(length(lambda) > 1) d2 <- as.matrix(d2) %*% lambda[catvars]
#a2 <- proc.time()[3]
dists[,i] <- d1 + d2
#cat(a1-a0, a2-a1, "\n")
}
# assign clusters
old.clusters <- clusters
# clusters <- apply(dists, 1, function(z) which.min(z))
clusters <- apply(dists, 1, function(z) {a <- which.min(z); if (length(a)>1) a <- sample(a,1); return(a)}) # sample in case of multiple minima
size <- table(clusters)
min.dists <- apply(cbind(clusters, dists), 1, function(z) z[z[1]+1])
within <- as.numeric(by(min.dists, clusters, sum))
tot.within <- sum(within)
# prevent from empty classes
#tot.within <- numeric(k)
#totw.list <- by(min.dists, clusters, sum)
#tot.within[names(totw.list)] <- as.numeric(totw.list)
# ...check for empty clusters and eventually reduce number of prototypes
if (length(size) < k){
k <- length(size)
protos <- protos[1:length(size),]
if(verbose) cat("Empty clusters occur. Cluster number reduced to:", k, "\n\n")
}
# trace
tot.dists <- c(tot.dists, sum(tot.within))
moved <- c(moved, sum(clusters != old.clusters))
# compute new prototypes
remids <- as.integer(names(size))
for(i in remids){
protos[which(remids == i), numvars] <- sapply(x[clusters==i, numvars, drop = FALSE], mean, na.rm = TRUE)
protos[which(remids == i), catvars] <- sapply(x[clusters==i, catvars, drop = FALSE], function(z) levels(z)[which.max(table(z))])
}
if(k == 1){clusters <- rep(1, length(clusters)); size <- table(clusters); iter <- iter.max; break}
# check for any equal prototypes and reduce cluster number in case of occurence
if(iter == (iter.max-1)){ # REM: for last iteration equal prototypes are allowed. otherwise less prototypes than assigned clusters.
keep.protos <- rep(TRUE,k)
for(l in 1:(k-1)){
for(m in (l+1):k){
d1 <- sum((protos[l,numvars, drop = FALSE]-protos[m,numvars, drop = FALSE])^2) # euclidean for numerics
d2 <- sum(protos[l,catvars, drop = FALSE] != protos[m,catvars, drop = FALSE]) # wtd simple matching for categorics
if((d1+d2) == 0) keep.protos[m] <- FALSE
}
}
if(!all(keep.protos)){
protos <- protos[keep.protos,]
k <- sum(keep.protos)
if(verbose) cat("Equal prototypes merged. Cluster number reduced to:", k, "\n\n")
}
}
# add stopping rules
if(moved[length(moved)] == 0) break
if(k == 1){clusters <- rep(1, length(clusters)); size <- table(clusters); iter <- iter.max; break}
#cat("iter", iter, "moved", moved[length(moved)], "tot.dists",tot.dists[length(tot.dists)],"\n" )
iter <- iter+1
}
### Final update of prototypes and dists
if(iter == iter.max){ # otherwise there have been no moves anymore and prototypes correspond to cluster assignments
# compute new prototypes
remids <- as.integer(names(size))
for(i in remids){
protos[which(remids == i), numvars] <- sapply(x[clusters==i, numvars, drop = FALSE], mean, na.rm = TRUE)
protos[which(remids == i), catvars] <- sapply(x[clusters==i, catvars, drop = FALSE], function(z) levels(z)[which.max(table(z))])
}
# compute distances
nrows <- nrow(x)
dists <- matrix(NA, nrow=nrows, ncol = k)
for(i in 1:k){
d1 <- (x[,numvars, drop = FALSE] - matrix(rep(as.numeric(protos[i, numvars, drop = FALSE]), nrows), nrow=nrows, byrow=T))^2
if(length(lambda) == 1) d1 <- rowSums(d1, na.rm = TRUE)
if(length(lambda) > 1) d1 <- as.matrix(d1) %*% lambda[numvars]
d2 <- sapply(which(catvars), function(j) return(x[,j] != rep(protos[i,j], nrows)) )
d2[is.na(d2)] <- FALSE
if(length(lambda) == 1) d2 <- lambda * rowSums(d2)
if(length(lambda) > 1) d2 <- as.matrix(d2) %*% lambda[catvars]
dists[,i] <- d1 + d2
}
size <- table(clusters)
min.dists <- apply(cbind(clusters, dists), 1, function(z) z[z[1]+1])
within <- as.numeric(by(min.dists, clusters, sum))
tot.within <- sum(within)
}
names(clusters) <- row.names(dists) <- row.names(x)
rownames(protos) <- NULL
# create result:
res <- list(cluster = clusters,
centers = protos,
lambda = lambda,
size = size,
withinss = within,
tot.withinss = tot.within,
dists = dists,
iter = iter,
trace = list(tot.dists = tot.dists, moved = moved))
# loop: if nstart > 1:
if(nstart > 1)
for(j in 2:nstart){
res.new <- kproto(x=x, k=k_input, lambda = lambda, iter.max = iter.max, nstart=1, verbose=verbose)
if(res.new$tot.withinss < res$tot.withinss) res <- res.new
}
if(keep.data) res$data = x
class(res) <- "kproto"
return(res)
}