我需要创建一个图灵机,该图灵机接受a ^ 1 b ^ j c ^ k语言,其中i> = j> = k,但我什至不确定如何开始。在这种情况下,由于某种原因,图灵机是一个很难理解的概念。
答案 0 :(得分:0)
图灵机可以读取和写入磁带,并在磁带上来回移动。如果您有一排三色的大理石线,您会如何看待它们是否像您的语言中的弦一样排列?您可以验证它们是否顺序正确,然后分别计算每种颜色并确保关系成立。 “大于或等于”是二进制关系,因此您可能需要分别检查两个对。使用三个额外的磁带,这真的很容易想到:
如果我们不想使用多余的磁带,该如何进行?好吧,我们可以继续进行操作,并确保先将符号按正确的顺序排列……使其余部分更加整洁。然后,我们可以“交叉”一对a和b,直到用尽所有b(如果我们先用尽所有,则使用halt_reject);然后,解开b并交叉b和c对,直到用尽c(如果先用尽b,则请halt_reject)。像...
q t q' t' d
q0 # q1 # right //
q1 a q1 a right //
q1 b q2 b right //
q1 # q4 # left //
q2 b q2 b right // verify subset of
q2 c q3 c right // a*b*c*
q2 # q4 # left //
q3 c q3 c right //
q3 # q4 # left //
q4 a q4 a left //
q4 b q4 b left // reset input
q4 c q4 c left // tape to start
q4 # q5 # right //
q5 a q5 a right //
q5 A q5 A right // change susbtring a^j b^j
q5 b q6 B left // into substring A^j b^j
q5 B q5 B right // if run out of a, crash
q5 c q7 C left // if run out of b and no c, accept
q5 # h_a # left // if run out of b and c, continue
q6 a q5 A right //
q6 A q6 A left //
q6 B q6 B left //
q7 B q8 D right //
q7 C q7 C left // change substring B^k c^k
q7 D q7 D left // to substring D^k c^k
q8 D q8 D right // if run out of B, crash
q8 C q8 C right // if run out of c, accept
q8 c q7 C left //
q8 # h_a # left //
示例1:aaabbc
(q0, [#]aaabbc#) -> (q1, #[a]aabbc#) -> (q1, #a[a]abbc#) //
-> (q1, #aa[a]bbc#) -> (q1, #aaa[b]bc#) -> (q2, #aaab[b]c#) // a*b*c*
-> (q2, #aaabb[c]#) -> (q3, #aaabbc[#]) -> (q4, #aaabb[c]#) //
-> (q4, #aaab[b]c#) -> (q4, #aaa[b]bc#) -> (q4, #aa[a]bbc#) //
-> (q4, #a[a]abbc#) -> (q4, #[a]aabbc#) -> (q4, [#]aaabbc#) // reset
-> (q5, #[a]aabbc#) //
-> (q5, #a[a]abbc#) -> (q5, #aa[a]bbc#) -> (q5, #aaa[b]bc#) //
-> (q6, #aa[a]Bbc#) -> (q5, #aaA[B]bc#) -> (q5, #aaAB[b]c#) // a^j b^j
-> (q6, #aaA[B]Bc#) -> (q6, #aa[A]BBc#) -> (q6, #a[a]ABBc#) // A^j B^j
-> (q5, #aA[A]BBc#) -> (q5, #aAA[B]Bc#) -> (q5, #aAAB[B]c#) //
-> (q5, #aAABB[c]#) -> (q7, #aAAB[B]C#) //
-> (q8, #aAABD[C]#) -> (q8, #aAABDC[#]) -> (ha, #aAABD[C]#) // B^k c^k
// D^k C^k