具有过度约束类的梦魇表达树

时间:2011-04-04 15:55:44

标签: c++ expression-trees friend

我无意中让我的学生过度压缩用于解决以下问题的共享课程。我意识到这个网站的居民可能会喜欢这个问题。

第一个团队/函数getNodes使用带符号整数和四个操作+, - ,*和/来获取表示前缀表达式的字符串,并使用类Node生成相应的以空值终止的标记链表。通过“正确”指针链接的令牌。

第二个团队/函数getTree采用类似的字符串,将其传递给getNodes,并将结果节点重新链接为表达式树。

第三个团队/函数,evaluate,获取一个类似的字符串,将其传递给getTree,并评估结果表达式树以形成答案。

过度约束的exptree.h如下。这个问题必须通过编写上面定义的三个函数来解决,没有其他函数。

#ifndef EXPTREE_H_
#define EXPTREE_H_

using namespace std;

enum Ops{ADD, SUB, MUL, DIV, NUM};

class Node {
   private:
        int num;
        Ops op;
        Node *left, *right;

    public:
        friend Node *getNodes(string d);
        friend Node *getTree(string d);
        friend int evaluate (string);
    };

int evaluate(string d);
Node *getNodes(string d);
Node *getTree(string d);
#endif

唯一可以使用的库是

#include <iostream>
#include <vector>
#include <string>
#include "exptree.h" 

对于那些担心我的学生的人,我今天将指出一些更好的功能如何能够轻松解决这个问题。我知道表达式树可以编码有理数而不仅仅是整数。我今天也会指出这一点。

这是我根据他们的规格给出的驱动程序。

#include <iostream>
#include <string>
#include "exptree.h"
using namespace std;
void test(string s, int target) {
    int result = evaluate(s);
    if (result == target)
        cout << s << " correctly evaluates to " << target << endl;
    else
        cout << s << "(" << result 
             << ") incorrectly evaluates to " << target << endl;
}
int main() {
    test("42", 42);
    test("* - / 4 2 1 42", 42);
    test("* - / -4 +2 -1 2", -2);
    test("* - / -4 +2 -1 2            ", -2);
    test("* 9 6", 54);
    return 0;
}

你能以尽可能优雅的方式编写这三个功能来解决这个噩梦般的问题吗?

3 个答案:

答案 0 :(得分:1)

在这些约束条件下编写getNodesgetTree函数非常简单,所以我只是跳到了有趣的部分。您自然会递归地评估表达式树,但这不是一个选项,因为eval函数只接受一个字符串。当然,您可以将剩余的树重新分解为前缀表达式并在其上递归调用eval,但这只是愚蠢的。

首先,我将表达式树转换为后缀表达式,使用显式堆栈作为穷人的递归。然后我用标准操作数堆栈来评估它。

#include <iostream>
#include <vector>
#include <string>
using namespace std;
#include "exptree.h" 

int evaluate(string d){
    Node* tree = getTree(d);
   //convert tree to postfix for simpler evaluation
    vector<Node*> node_stack;
    node_stack.push_back(tree);
    Node postfix_head;
    Node* postfix_tail = &postfix_head;
    while(node_stack.size() > 0){
        Node* place = node_stack.back();
        if(place->left == 0){
             if(place->right == 0){
                 postfix_tail->right = place;
                 node_stack.pop_back();
             } else {
                 node_stack.push_back(place->right);
                 place->right = 0;
             }
        } else {
            node_stack.push_back(place->left);
            place->left = 0;
        }
    }
   //evaluate postfix
    Node* place = postfix_head.right;
    vector<int> stack;
    while(place != 0){
        if(place->op != NUM){
            int operand_a, operand_b;
            operand_b = stack.back();
            stack.pop_back();
            operand_a = stack.back();
            stack.pop_back();
            switch(place->op){
                case ADD:
                    stack.push_back(operand_a + operand_b);
                    break;
                case SUB:
                    stack.push_back(operand_a - operand_b);
                    break;
                case MUL:
                    stack.push_back(operand_a * operand_b);
                    break;
                case DIV:
                    stack.push_back(operand_a / operand_b);
                    break;
            }
        } else {
            stack.push_back(place->num);
        }
        place = place->right;
    }
    return stack.back();
}

答案 1 :(得分:0)

我认为“没有额外的功能”是一个太难的要求。实现最简单的方法,例如getTree可能是递归的,它需要定义一个额外的函数。

Node* relink(Node* start) // builds a tree; returns the following node
{
    if (start->op == NUM)
    {
        Node* result = start->right;
        start->left = start->right = NULL;
        return result;
    }
    else
    {
        start->left = start->right;
        start->right = relink(start->left);
        return relink(start->right);
    }
}

Node* getTree(string d)
{
    Node* head = getNodes(d);
    relink(head);
    return head;
}

我可以通过使用显式堆栈(由std::vector实现)来实现递归,但这很丑陋(除非你希望学生完全练习)。

答案 2 :(得分:0)

为了它的价值,这是我在发布问题之前编写的解决方案

#include <iostream>
#include <vector>
#include "exptree.h"
using namespace std;

Node *getNodes(string s) {
    const int MAXINT =(int)(((unsigned int)-1) >> 1), MININT = -MAXINT -1;
    Node *list;
    int sign, num;

    s += " ";                                                   // this simplifies a lot of logic, allows trailing white space to always close off an integer
    list = (Node *) (num = sign = 0);
    for (int i=0; i<s.size(); ++i) {
        char c = s[i];                                          // more efficient and cleaner reference to the current character under scrutiny
        if (isdigit(c)) {
            if (sign == 0) sign = 1;                            // if sign not set, then set it. A blank with a sign==0 now signifies a blank that can be skipped
            num = 10*num + c - '0';
        } else if (((c=='+') || (c=='-')) && isdigit(s[i+1])) { // another advantage of adding blank to string above so don't need a special case
            sign = (c=='+') ? 1 : -1;
        } else if ( !isspace(c) &&  (c != '+')  && (c != '-')  && (c != '*')  && (c != '/')) {
            cout << "unexpected character " << c << endl;
            exit(1);
        } else if  (!isspace(c) || (sign != 0)) {                                                       // have enough info to create next Node
            list->left = (list == 0) ? (list = new Node) : (list->left->right = new Node);              // make sure left pointer of first Node points to last Node
            list->left->right = 0;                                                                      // make sure list is still null terminated
            list->left->op = (c=='+' ? ADD : (c=='-' ? SUB : (c=='*' ? MUL : (c=='/' ? DIV : NUM))));   // choose right enumerated type
            list->left->num = (list->left->op==NUM) ? sign*num : MININT;                                // if interior node mark number for evaluate function
            num = sign = 0;                                                                             // prepare for next Node
        }
    }
    return list;
}

Node *getTree(string s) {
    Node *nodes = getNodes(s), *tree=0, *root, *node;
    vector<Node *> stack;

    if (nodes == 0) return tree;
    root = tree = nodes;
    nodes = nodes->right;
    for (node=nodes; node != 0; node=nodes) {
        nodes = nodes->right;
        if (root->op != NUM) {              // push interior operator Node on stack til time to point to its right tree
            stack.push_back(root);
            root = (root->left = node);     // set interior operator Node's left tree and prepare to process that left tree
        } else {                            
            root->left = root->right = 0;   // got a leaf number Node so finish it off
            if (stack.size() == 0) break;
            root = stack.back();            // now pop operator Node off the stack
            stack.pop_back();
            root = (root->right = node);    // set its left tree and prepare to process that left tree
        }
    }
    if ((stack.size() != 0) || (nodes != 0)) {
        cout << "prefix expression has missing or extra terms" << endl;
        exit(1);
    }
    return tree;
}

int evaluate(string s) {
    // MININT is reserved value signifying operator waiting for a left side value, low inpact since at edge of representable integers
    const int MAXINT =(int)(((unsigned int)-1) >> 1), MININT = -MAXINT -1;
    Node *tree = getTree(s);
    vector<Node *> stack;
    int v = 0;                              // this is value of a leaf node (a number) or the result of evaluating an interior node
    if (tree == 0) return v;
    do {
        v = tree->num;
        if (tree->op != NUM) {
            stack.push_back(tree);
            tree = tree->left;              // prepare to process the left subtree      
        } else while (stack.size() != 0) {  // this while loop zooms us up the right side as far as we can go (till we come up left side or are done)
            delete tree;                    // done with leaf node or an interior node we just finished evaluating
            tree = stack.back();            // get last interior node from stack
            if (tree->num == MININT) {      // means returning up left side of node, so save result for later
                tree->num = v;
                tree = tree->right;         // prepare to evaluate the right subtree
                break;                      // leave the "else while" for the outer "do while" which handles evaluating an expression tree
            } else {                        // coming up right side of an interior node (time to calculate)
                stack.pop_back();           // all done with interior node
                v = tree->op==ADD ? tree->num+v : (tree->op==SUB ? tree->num-v : (tree->op==MUL ? tree->num*v : tree->num/v)) ;
            }
        }
    } while (stack.size() != 0);
    return v;
}