我目前正在尝试找出表达式树的算法。我当前将获得的字符串将类似于Hello+12+World
或A2-12-A3-14
。这些字符串将具有相同的运算符。使用我的算法,当前的最后一个操作数没有放入树中。我已经看过网上了,但我很难理解如何使其正常工作。
Stack<BaseNode> TreeStack = new Stack<BaseNode>();
BaseNode temp1 = new BaseNode();
BaseNode temp2 = new BaseNode();
for (int i = 0; i < tree.Length; i++)
{
VariableNode varNode = new VariableNode();
NumericalNode numNode = new NumericalNode();
if (CheckExpressions(tree[i])) // if the character is an operator
{
OperatorNode expression = new OperatorNode(tree[i]);
temp1 = TreeStack.Pop();
if (TreeStack.Count != 0)
{
temp2 = TreeStack.Pop();
}
expression.Right = temp1;
expression.Left = temp2;
TreeStack.Push(expression);
}
else if (!CheckExpressions(tree[i]))
{
if (Char.IsLetter(tree[i]))
{
while (Char.IsLetter(tree[i])) // for the variable node
{
varNode.name += tree[i];
if (i + 1 == tree.Length)
{
break;
}
i++;
}
TreeStack.Push(varNode);
if (i + 1 != tree.Length)
{
i--;
}
}
else if (Char.IsDigit(tree[i])) // for constant value
{
int zero = 0; // for appending the numbers to combine them
while (Char.IsDigit(tree[i]))
{
if (zero == 0)
{
zero = tree[i] - '0';
}
else
{
zero = int.Parse(zero.ToString() + tree[i].ToString());
}
if (i < tree.Length)
{
i++;
}
}
if (i + 1 != tree.Length)
{
i--;
}
numNode.number = zero;
TreeStack.Push(numNode);
}
}
}
答案 0 :(得分:0)
我认为您了解您缺少第二个操作数,因为一旦您看到运算符,便会尝试为2个值弹出堆栈。在示例中,您可以很容易地看出它永远不会出现(由于运算符是二进制的,所以堆栈将有2个变量)。因此,您应该了解如何存储第二个变量和运算符,并在以后尝试对其求值。下面的算法可能会有所帮助,请务必理解它是简单运算符的基础。
在2 * 3 + 4中,当达到+时,一个堆栈中将有2,3个,而另一个堆栈中将有*。现在,在尝试推+时,您将看到优先级更高的堆栈中的*,因此将其弹出,因为其二进制运算符会弹出2个变量,构建一个表达式求值并将其压入变量堆栈(因为评估将是一个变量/数字),然后再次查看堆栈上是否还有其他具有更高优先级的运算符。
添加解决方案时,请切记: 1.运算符优先级/哪种运算符(一元/二元)/对称性/非对称性(+是对称但幂不是)将发挥重要作用。
尽量不要在循环内修改i变量,迟早会遇到麻烦。
给出的代码仅适用于给出的2个示例,并且检查优先级的部分为空白,但可以根据现有代码进行填充。
您需要修改变量命名loigc,以防出现诸如“ A2”之类的混合名称,您当前的逻辑将失败。
string tree = "AB-12-AC-14";
Stack<BaseNode> TreeStack = new Stack<BaseNode>();
Stack<BaseNode> TreeStack1 = new Stack<BaseNode>();
BaseNode temp1 = new BaseNode();
BaseNode temp2 = new BaseNode();
for (int i = 0; i < tree.Length; i++)
{
VariableNode varNode = new VariableNode();
NumericalNode numNode = new NumericalNode();
if (CheckExpressions(tree[i])) // if the character is an operator
{
OperatorNode expression = new OperatorNode(tree[i]);
//check priority should pass the current operator to really check for priority
if (CheckPriority() || TreeStack1.Count == 0)
{
TreeStack1.Push(expression);
}
else
{
// assuming binary operators only
temp1 = TreeStack.Pop();
temp2 = TreeStack.Pop();
expression.Right = temp1;
expression.Left = temp2;
TreeStack.Push(expression);
// need to check if there are more operators on stack1 are they higher priority then current operator
// if they are then pop them and apply them too
}
}
else if (!CheckExpressions(tree[i]))
{
if (Char.IsLetter(tree[i]))
{
while (Char.IsLetter(tree[i])) // for the variable node
{
varNode.name += tree[i];
if (i + 1 == tree.Length)
{
break;
}
i++;
}
TreeStack.Push(varNode);
if (i + 1 != tree.Length)
{
i--;
}
}
else if (Char.IsDigit(tree[i])) // for constant value
{
int zero = 0; // for appending the numbers to combine them
while (i < tree.Length && Char.IsDigit(tree[i])) // need to check for length otherwise index will go out of bounds
{
if (zero == 0)
{
zero = tree[i] - '0';
}
else
{
zero = int.Parse(zero.ToString() + tree[i].ToString());
}
if (i < tree.Length)
{
i++;
}
}
if (i + 1 != tree.Length)
{
i--;
}
numNode.number = zero;
TreeStack.Push(numNode);
}
}
}
// finish any remaining operators and push the final expression on the stack
while (TreeStack1.Count!=0)
{
OperatorNode expression1 = new OperatorNode(((OperatorNode)TreeStack1.Pop()).v);
expression1.Right = TreeStack.Pop();
expression1.Left = TreeStack.Pop();
TreeStack.Push(expression1);
}