如何在R中的主题比较中进行双向重复?

时间:2019-03-26 21:20:29

标签: r

我有以下数据(3x3主题内设计):

subj phase cope mean
1    A     a    ...
1    A     b    ...
1    A     c    ...
1    B     a    ...
1    B     b    ...
1    B     c    ...
1    C     a    ...
1    C     b    ...
1    C     c    ...
2    A     a    ...
2    A     b    ...
2    A     c    ...
2    B     a    ...
2    B     b    ...
2    B     c    ...
2    C     a    ...
2    C     b    ...
2    C     c    ...
...

阶段和应付都是分类的,并且DV(平均值)是连续的。

如何使用此数据在主题ANOVA / lme中运行3-by-3(ABCxabc),我该怎么做事后测试?

在网上搜索后,我发现了以下3种可能的选择:

1. baselinemodel <- lme(m ~ 1, random = ~1 | subj/phase/cope, data = csv_temp, method = "ML")
copemodel <- lme(m ~ cope, random = ~1 | subj/phase/cope, data = csv_temp, method = "ML")
phasemodel <- lme(m ~ phase, random = ~1 | subj/phase/cope, data = csv_temp, method = "ML")
fullmodel <- lme(m ~ phase + cope, random = ~1 | subj/phase/cope, data = csv_temp, method = "ML")
interactionmodel <- lme(m ~ phase * cope, random = ~1 | subj/phase/cope, data = csv_temp, method = "ML")
anova(baselinemodel, copemodel, phasemodel, fullmodel, interactionmodel)

2. m.lme <- lme(m ~ cope * phase, data = csv_temp, random = ~1 | subj)

3. m.lme <- lme(m ~ cope * phase, random = list(subj = pdBlocked(list(~1, pdIdent(~ cope - 1), pdIdent(~ phase - 1)))), data = csv_temp)
anova(m.lme)

他们产生了不同的结果。哪种方法是正确的?以及如何跟进事后测试(目前,这两种方法都无法产生显着的相互作用)?

0 个答案:

没有答案