我有如下系列:
dat <- c(9, 8, 10, 10, 11, 12, 16, 20, 18, 18, 21, 22, 25, 14)
如果您可以共享如何使该系列平稳的话,那将是一个很大的帮助。我已经尝试过diff
和log
转换,但是到现在为止还是有帮助的。增强的Dickey-Fuller检验仍然微不足道。
答案 0 :(得分:0)
例如,可以通过将CoxBox
与diff
结合使用来使数据保持不变,例如:
# getting package for CoxBox transformations
library(RxODE)
# setting up your data
dat <- c(9, 8, 10, 10, 11, 12, 16, 20, 18, 18, 21, 22, 25, 14)
# checking the stationarity
adf.test(diff(coxBox(dat, lambda=5)))
# Augmented Dickey-Fuller Test
# data: diff(coxBox(dat, lambda = 5))
# Dickey-Fuller = -3.8838, Lag order = 2, p-value = 0.02973
# alternative hypothesis: stationary
adf.test(diff(coxBox(dat, lambda=4)))
# Augmented Dickey-Fuller Test
# data: diff(coxBox(dat, lambda = 4))
# Dickey-Fuller = -3.7048, Lag order = 2, p-value = 0.04251
# alternative hypothesis: stationary
adf.test(diff(coxBox(dat, lambda=-3)))
# Augmented Dickey-Fuller Test
# data: diff(coxBox(dat, lambda = -3))
# Dickey-Fuller = -4.2585, Lag order = 2, p-value = 0.01424
# alternative hypothesis: stationary
Box-Cox的倒数可以像this一样完成:
library(bimixt)
dat <- c(9, 8, 10, 10, 11, 12, 16, 20, 18, 18, 21, 22, 25, 14) # Original data
dat_cb <- coxBox(dat, lambda=3) # data after Cox Box transformation with lambda=3
dat_inv_cb <- boxcox.inv(dat_cb, lambda=3) # data after INVERSE Cox Box transformation with lambda=3
dat_inv_cb
# [1] 9 8 10 10 11 12 16 20 18 18 21 22 25 14