我想在稀疏矩阵中找到n个零元素。我写下面的代码:
counter = 0
while counter < n:
r = randint(0, W.shape[0]-1)
c = randint(0, W.shape[1]-1)
if W[r,c] == 0:
result.append([r,c])
counter += 1
不幸的是,它非常慢。我想要更有效率的东西。有什么方法可以从scipy稀疏矩阵中快速访问零元素吗?
答案 0 :(得分:1)
首先,下面是一些用于创建示例数据的代码:
import numpy as np
rows, cols = 10,20 # Shape of W
nonzeros = 7 # How many nonzeros exist in W
zeros = 70 # How many zeros we want to randomly select
W = np.zeros((rows,cols), dtype=int)
nonzero_rows = np.random.randint(0, rows, size=(nonzeros,))
nonzero_cols = np.random.randint(0, cols, size=(nonzeros,))
W[nonzero_rows, nonzero_cols] = 20
以上代码已将W
创建为稀疏的numpy数组,形状为(10,20)
,并且仅包含7
个非零元素(200
个元素中) 。所有非零元素的值均为20
。
以下是从此稀疏矩阵中选择zeros=70
个零元素的解决方案:
argwhere_res = np.argwhere(np.logical_not(W))
zero_count = len(argwhere_res)
ids = np.random.choice(range(zero_count), size=(zeros,))
res = argwhere_res[ids]
res
现在将是形状(70,2)
的数组,给出我们从70
中随机选择的W
元素的位置。
请注意,这不涉及任何循环。
答案 1 :(得分:1)
import numpy as np
import scipy.sparse as sparse
import random
randint = random.randint
def orig(W, n):
result = list()
while len(result) < n:
r = randint(0, W.shape[0]-1)
c = randint(0, W.shape[1]-1)
if W[r,c] == 0:
result.append((r,c))
return result
def alt(W, n):
nrows, ncols = W.shape
density = n / (nrows*ncols - W.count_nonzero())
W = W.copy()
W.data[:] = 1
W2 = sparse.csr_matrix((nrows, ncols))
while W2.count_nonzero() < n:
W2 += sparse.random(nrows, ncols, density=density, format='csr')
# remove nonzero values from W2 where W is 1
W2 -= W2.multiply(W)
W2 = W2.tocoo()
r = W2.row[:n]
c = W2.col[:n]
result = list(zip(r, c))
return result
def alt_with_dupes(W, n):
nrows, ncols = W.shape
density = n / (nrows*ncols - W.count_nonzero())
W = W.copy()
W.data[:] = 1
W2 = sparse.csr_matrix((nrows, ncols))
while W2.data.sum() < n:
tmp = sparse.random(nrows, ncols, density=density, format='csr')
tmp.data[:] = 1
W2 += tmp
# remove nonzero values from W2 where W is 1
W2 -= W2.multiply(W)
W2 = W2.tocoo()
num_repeats = W2.data.astype('int')
r = np.repeat(W2.row, num_repeats)
c = np.repeat(W2.col, num_repeats)
idx = np.random.choice(len(r), n)
result = list(zip(r[idx], c[idx]))
return result
以下是基准:
W = sparse.random(1000, 50000, density=0.02, format='csr')
n = int((np.multiply(*W.shape) - W.nnz)*0.01)
In [194]: %timeit alt(W, n)
809 ms ± 261 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [195]: %timeit orig(W, n)
11.2 s ± 121 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [223]: %timeit alt_with_dupes(W, n)
986 ms ± 290 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
请注意,alt
返回一个没有重复的列表。 orig
和alt_with_dupes
都可能返回重复项。
答案 2 :(得分:0)
首先列出所有0的列表:
list_0s = [(j, i) for i in range(len(matrix[j])) for j in range len(matrix) if matrix[j,i] == 0]
然后获得您的随机选择:
random_0s = random.choices(list_0s, k=n)
对此进行测试:
matrix = np.random.randint(1000, size=(1000,1000))
n = 100
需要0.34秒。