我有2个Keras子模型(model_1
,model_2
),其中我通过使用model
逻辑上按“系列”进行堆叠来形成完整的keras.models.Model()
。我的意思是,model_2
接受model_1
的输出加上一个额外的输入张量,而model_2
的输出就是我完整model
的输出。完整的model
已创建成功 ,我也可以使用compile/train/predict
。
但是,我想通过在2个GPU上运行model
来并行化训练,因此我使用multi_gpu_model()
,但失败并出现错误:
AssertionError: Could not compute output Tensor("model_2/Dense_Decoder/truediv:0", shape=(?, 33, 22), dtype=float32)
我尝试使用multi_gpu_model(model_1, gpus=2)
和multi_gpu_model(model_1, gpus=2)
分别并行化两个子模型,但都成功。对于完整模型,该问题仅仅出现。
我正在使用 Tensorflow 1.12.0 和 Keras 2.2.4 。演示该问题的代码段(至少在我的计算机上)为:
from keras.layers import Input, Dense,TimeDistributed, BatchNormalization
from keras.layers import CuDNNLSTM as LSTM
from keras.models import Model
from keras.utils import multi_gpu_model
dec_layers = 2
codelayer_dim = 11
bn_momentum = 0.9
lstm_dim = 128
td_dense_dim = 0
output_dims = 22
dec_input_shape = [33, 44]
# MODEL 1
latent_input = Input(shape=(codelayer_dim,), name="Latent_Input")
# Initialize list of state tensors for the decoder
decoder_state_list = []
for dec_layer in range(dec_layers):
# The tensors for the initial states of the decoder
name = "Dense_h_" + str(dec_layer)
h_decoder = Dense(lstm_dim, activation="relu", name=name)(latent_input)
name = "BN_h_" + str(dec_layer)
decoder_state_list.append(BatchNormalization(momentum=bn_momentum, name=name)(h_decoder))
name = "Dense_c_" + str(dec_layer)
c_decoder = Dense(lstm_dim, activation="relu", name=name)(latent_input)
name = "BN_c_" + str(dec_layer)
decoder_state_list.append(BatchNormalization(momentum=bn_momentum, name=name)(c_decoder))
# Define model_1
model_1 = Model(latent_input, decoder_state_list)
# MODEL 2
inputs = []
decoder_inputs = Input(shape=dec_input_shape, name="Decoder_Inputs")
inputs.append(decoder_inputs)
xo = decoder_inputs
for dec_layer in range(dec_layers):
name = "Decoder_State_h_" + str(dec_layer)
state_h = Input(shape=[lstm_dim], name=name)
inputs.append(state_h)
name = "Decoder_State_c_" + str(dec_layer)
state_c = Input(shape=[lstm_dim], name=name)
inputs.append(state_c)
# RNN layer
decoder_lstm = LSTM(lstm_dim,
return_sequences=True,
name="Decoder_LSTM_" + str(dec_layer))
xo = decoder_lstm(xo, initial_state=[state_h, state_c])
xo = BatchNormalization(momentum=bn_momentum, name="BN_Decoder_" + str(dec_layer))(xo)
if td_dense_dim > 0: # Squeeze LSTM interconnections using Dense layers
xo = TimeDistributed(Dense(td_dense_dim), name="Time_Distributed_" + str(dec_layer))(xo)
# Final Dense layer to return probabilities
outputs = Dense(output_dims, activation='softmax', name="Dense_Decoder")(xo)
# Define model_2
model_2 = Model(inputs=inputs, outputs=[outputs])
# FULL MODEL
latent_input = Input(shape=(codelayer_dim,), name="Latent_Input")
decoder_inputs = Input(shape=dec_input_shape, name="Decoder_Inputs")
# Stack the two models
# Propagate tensors through 1st model
x = model_1(latent_input)
# Insert decoder_inputs as the first input of the 2nd model
x.insert(0, decoder_inputs)
# Propagate tensors through 2nd model
x = model_2(x)
# Define full model
model = Model(inputs=[latent_input, decoder_inputs], outputs=[x])
# Parallelize the model
parallel_model = multi_gpu_model(model, gpus=2)
parallel_model.summary()
非常感谢您的帮助/提示。
答案 0 :(得分:0)
我找到了解决我问题的方法,我不确定该如何辩解。
该问题是由我用x.insert(0, decoder_inputs)
代替的x = [decoder_inputs] + x
引起的。两者似乎都产生相同的张量列表,但是multi_gpu_model
在第一种情况下会抱怨。