我试图在Keras中微调一个经过修改的InceptionV3模型。
我按照示例"在一组新的类中调整InceptionV3"在this page。
所以我首先使用以下代码训练添加到InceptionV3基本模型中的顶部密集层:
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
parallel_model = multi_gpu_model(model, gpus=2)
parallel_model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
history = parallel_model.fit_generator(generate_batches(path), steps_per_epoch = num_images/batch_size, epochs = num_epochs)
之后,我尝试微调InceptionV3中的前2个初始块。根据这个例子,我应该做的是:
for layer in model.layers[:249]:
layer.trainable = False
for layer in model.layers[249:]:
layer.trainable = True
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy')
model.fit_generator(...)
但我使用multi_gpu_model
,所以我不知道如何冻结前249层。
我的意思是,如果我冻结no-gpu模型中的图层(如示例),并使用parallel_model = multi_gpu_model(model, gpus=2)
冻结parallel_model
中的图层,则顶部密集图层中的权重刚被训练并包含在parallel_model
中的内容将被覆盖,对吧?
另一方面,我尝试直接使用for layer in parallel_model.layers[:249]: layer.trainable = False
,但当我检查parallel_model
中的图层时,显示:
for i, layer in enumerate(parallel_model.layers):
print(i, layer.name)
(0, 'input_1')
(1, 'lambda_1')
(2, 'lambda_2')
(3, 'model_1')
(4, 'dense_3')
那么什么是' lambda_1',' lambda_2'和' model_1'图层以及为什么它只显示parallel_model
中的5个图层?
更重要的是,如何冻结parallel_model
?
答案 0 :(得分:2)
这个例子有点复杂,因为你正在嵌套一个基础模型
base_model = InceptionV3(weights='imagenet', include_top=False)
进入添加自己的密集层的模型
model = Model(inputs=base_model.input, outputs=predictions)
然后调用multi_gpu_model,当它使用lambda为每个GPU分割模型一次时再次嵌套模型,然后将输出连接在一起,以便将模型分布在多个gpus上。
parallel_model = multi_gpu_model(model, gpus=2)
在这种情况下,请记住两件事:更改base_model中图层的可训练性,并将非并行模型加载到cpu中以获得最佳性能。
以下是完整的微调示例,只需更新train_data_dir即可指向您自己的数据位置。
import tensorflow as tf
from keras import Model
from keras.applications.inception_v3 import InceptionV3, preprocess_input
from keras.layers import Dense, GlobalAveragePooling2D
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from keras.utils import multi_gpu_model
train_data_dir = '/home/ubuntu/work/data/train'
batch_size_per_gpu = 32
nb_classes = 3
my_gpus = 2
target_size = (224, 224)
num_epochs_to_fit_dense_layer = 2
num_epochs_to_fit_last_two_blocks = 3
batch_size = batch_size_per_gpu * my_gpus
train_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
train_iterator = train_datagen.flow_from_directory(
train_data_dir,
target_size=target_size,
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
# Check to make sure our model will match our data
assert nb_classes == train_iterator.num_classes
# Create base and template models on cpu
with tf.device('/cpu:0'):
base_model = InceptionV3(weights='imagenet', include_top=False)
for layer in base_model.layers:
layer.trainable = False
# Add prediction layer to base pre-trained model
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(nb_classes, activation='softmax')(x)
template_model = Model(inputs=base_model.input, outputs=predictions)
# If you need to load weights from previous training, do so here:
# template_model.load_weights('template_model.h5', by_name=True)
# Create parallel model on GPUs
parallel_model = multi_gpu_model(template_model, gpus=2)
parallel_model.compile(optimizer='adam', loss='categorical_crossentropy')
# Train parallel model.
history = parallel_model.fit_generator(
train_iterator,
steps_per_epoch=train_iterator.n // batch_size,
epochs=num_epochs_to_fit_dense_layer)
# Unfreeze some layers in our model
for layer in base_model.layers[:249]:
layer.trainable = False
for layer in base_model.layers[249:]:
layer.trainable = True
# Train parallel_model with more trainable layers
parallel_model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy')
history2 = parallel_model.fit_generator(
train_iterator,
steps_per_epoch=train_iterator.n // batch_size,
epochs=num_epochs_to_fit_last_two_blocks)
# Save model via the template model which shares the same weights as the parallel model.
template_model.save('template_model.h5')