我使用animated
bivariate
和gaussian
distribution
matplotlib
。我已经通过调整distribution
COV
以解决特定变量来计算出matrix
。我可以提供有关此过程的更多详细信息,但是基本上每个scatter
点都包含一个易于识别的特定位移。我遇到的问题是试图设置/修复/固定the distribution
未涵盖的区域。您可以看到值随颜色变化而波动。
问题:是否可以将这些 neutral 区域设置或固定为特定值,从而确定颜色。具体来说,coordinates
值未涵盖的xy
不应更改contour
值。它们应固定为0.5
。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sts
from matplotlib.animation import FuncAnimation
DATA_LIMITS = [-100, 100]
def datalimits(*data):
return DATA_LIMITS # dmin - spad, dmax + spad
def rot(theta):
theta = np.deg2rad(theta)
return np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])
def getcov(radius=1, scale=1, theta=0):
cov = np.array([
[radius*(scale + 1), 0],
[0, radius/(scale + 1)]
])
r = rot(theta)
return r @ cov @ r.T
def mvpdf(x, y, xlim, ylim, radius=1, velocity=0, scale=0, theta=0):
X,Y = np.meshgrid(np.linspace(*xlim), np.linspace(*ylim))
XY = np.stack([X, Y], 2)
x,y = rot(theta) @ (velocity/2, 0) + (x, y)
cov = getcov(radius=radius, scale=scale, theta=theta)
PDF = sts.multivariate_normal([x, y], cov).pdf(XY)
return X, Y, PDF
def mvpdfs(xs, ys, xlim, ylim, radius=None, velocity=None, scale=None, theta=None):
PDFs = []
for i,(x,y) in enumerate(zip(xs,ys)):
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdf(x, y,**kwargs)
PDFs.append(PDF)
return X, Y, np.sum(PDFs, axis=0)
fig, ax = plt.subplots(figsize = (10,4))
ax.set_xlim(DATA_LIMITS)
ax.set_ylim(DATA_LIMITS)
line_a, = ax.plot([], [], '.', c='red', alpha = 0.5, markersize=5, animated=True)
line_b, = ax.plot([], [], '.', c='blue', alpha = 0.5, markersize=5, animated=True)
cfs = None
def plotmvs(tdf, xlim=None, ylim=None, fig=fig, ax=ax):
global cfs
if cfs:
for tp in cfs.collections:
tp.remove()
df = tdf[1]
if xlim is None: xlim = datalimits(df['X'])
if ylim is None: ylim = datalimits(df['Y'])
PDFs = []
for (group, gdf), group_line in zip(df.groupby('group'), (line_a, line_b)):
# Update the scatter line data
group_line.set_data(*gdf[['X','Y']].values.T)
kwargs = {
'xlim': xlim,
'ylim': ylim
}
X, Y, PDF = mvpdfs(gdf['X'].values, gdf['Y'].values, **kwargs)
PDFs.append(PDF)
PDF = PDFs[0] - PDFs[1]
normPDF = PDF - PDF.min()
normPDF = normPDF / normPDF.max()
cfs = ax.contourf(X, Y, normPDF, levels=10, cmap='viridis', alpha = 0.8)
return cfs.collections + [line_a, line_b]
n = 10
time = range(n)
d = ({
'A1_Y' : [10,20,15,20,25,40,50,60,61,65],
'A1_X' : [15,10,15,20,25,25,30,40,60,61],
'A2_Y' : [10,13,17,10,20,24,29,30,33,40],
'A2_X' : [10,13,15,17,18,19,20,21,26,30],
'A3_Y' : [11,12,15,17,19,20,22,25,27,30],
'A3_X' : [15,18,20,21,22,28,30,32,35,40],
'A4_Y' : [15,20,15,20,25,40,50,60,61,65],
'A4_X' : [16,20,15,30,45,30,40,10,11,15],
'B1_Y' : [18,10,11,13,18,10,30,40,31,45],
'B1_X' : [17,20,15,10,25,20,10,12,14,25],
'B2_Y' : [13,10,14,20,21,12,30,20,11,35],
'B2_X' : [12,20,16,22,15,20,10,20,16,15],
'B3_Y' : [15,20,15,20,25,10,20,10,15,25],
'B3_X' : [18,15,13,20,21,10,20,10,11,15],
'B4_Y' : [19,12,15,18,14,19,13,12,11,18],
'B4_X' : [20,10,12,18,17,15,13,14,19,13],
})
tuples = [((t, k.split('_')[0][0], int(k.split('_')[0][1:]), k.split('_')[1]), v[i])
for k,v in d.items() for i,t in enumerate(time)]
df = pd.Series(dict(tuples)).unstack(-1)
df.index.names = ['time', 'group', 'id']
interval_ms = 200
delay_ms = 1000
ani = FuncAnimation(fig, plotmvs, frames=df.groupby('time'),
blit=True, interval=interval_ms, repeat_delay=delay_ms)
plt.show()
答案 0 :(得分:1)
我更改了您的规范化,并为levels
给出了明确的contourf()
,从而得到了所需的结果。您的代码更改很少;我替换了
normPDF = PDF - PDF.min()
normPDF = normPDF / normPDF.max()
cfs = ax.contourf(X, Y, normPDF, levels=10, cmap='viridis', alpha = 0.8)
使用
normPDF = PDF * .5/max(PDF.max(), -PDF.min()) + .5
cfs = ax.contourf(X, Y, normPDF, cmap='viridis', alpha = 0.8,
levels=np.arange(0, 1, .1))