我非常想将矩阵重塑为多维数组以用于卷积神经网络训练。
这是一个2x16的示例矩阵(实际矩阵约为11000x1024)
two_samples <- structure(c(257, 17, 258, 18, 65795, 19, 65796, 20, 261, 21,
262, 22, 65799, 23, 65800, 24, 9, 25, 10, 26, 65547, 27, 65548,
28, 13, 29, 14, 30, 65551, 31, 65552, 32), .Dim = c(2L, 16L))
two_samples
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
#> [1,] 257 258 65795 65796 261 262 65799 65800 9 10 65547 65548
#> [2,] 17 18 19 20 21 22 23 24 25 26 27 28
#> [,13] [,14] [,15] [,16]
#> [1,] 13 14 65551 65552
#> [2,] 29 30 31 32
在这里,每一行都是一个样本,我想将每个样本表示为彩色图像。而且我想整理数据,使其可以与Keras / Tensorflow一起用于CNN训练。
通过bitwAnd()
和bitwShiftR()
函数从十进制数生成RGB数据。我运行下面的命令从矩阵生成RGB。之后,我将dim()
用于数组,并使用aperm()
对数组进行整形:
mat_r <- bitwAnd(bitwShiftR(t(two_samples),16), 255)
mat_g <- bitwAnd(bitwShiftR(t(two_samples),8), 255)
mat_b <- bitwAnd(t(two_samples),255)
two_samples_flat <- array(c(mat_r, mat_g, mat_b))
arr <- array(two_samples_flat, dim=c(4,4,3,2))
data <- aperm(arr, c(4,1,2,3))
data[1,,,]
#> , , 1
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 0 0 0 0
#> [2,] 0 0 0 0
#> [3,] 1 1 1 1
#> [4,] 1 1 1 1
#>
#> , , 2
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 0 0 0 0
#> [2,] 0 0 0 0
#> [3,] 0 0 0 0
#> [4,] 0 0 0 0
#>
#> , , 3
#>
#> [,1] [,2] [,3] [,4]
#> [1,] 1 1 0 0
#> [2,] 1 1 0 0
#> [3,] 1 1 0 0
#> [4,] 1 1 0 0
但是,位函数返回平面向量,并且此后修改维数不允许多维数组的正确切片。我的预期尺寸和输出(显示了一个示例)如下所示
> dim(data)
2 4 4 3
> data[1,,,]
, , 1
[,1] [,2] [,3] [,4]
[1,] 0 0 1 1
[2,] 0 0 1 1
[3,] 0 0 1 1
[4,] 0 0 1 1
, , 2
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 1 1
[3,] 0 0 0 0
[4,] 0 0 0 0
, , 3
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
所以,我的问题是,如何从矩阵准备多维数组,以便可以与CNN一起使用。如果我做对了,我可以使用array_reshape
来重塑它以用于密集层网络:array_reshape(data, c(num_of_samples, width*height*3))