恢复训练卷积神经网络

时间:2018-08-07 07:52:00

标签: tensorflow machine-learning keras python-3.6 conv-neural-network

我有一个模型已经训练了75个纪元。我用model.save()保存了模型。培训代码是

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, load_model
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K

# dimensions of our images.
img_width, img_height = 320, 240

train_data_dir = 'dataset/Training_set'
validation_data_dir = 'dataset/Test_set'
nb_train_samples = 4000  #total
nb_validation_samples = 1000  # total
epochs = 25
batch_size = 10

if K.image_data_format() == 'channels_first':
    input_shape = (3, img_width, img_height)
else:
    input_shape = (img_width, img_height, 3)

model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='rmsprop',
              metrics=['accuracy'])

# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
    rescale=1. / 255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
    validation_data_dir,
    target_size=(img_width, img_height),
    batch_size=batch_size,
    class_mode='binary')

model.fit_generator(
    train_generator,
    steps_per_epoch=nb_train_samples // batch_size,
    epochs=epochs,
    validation_data=validation_generator,
    validation_steps=5)

model.save('model1.h5')

如何重新开始训练?我是否再次运行此代码?还是我需要进行更改,这些更改是什么?

我阅读了该帖子,并试图了解一些内容。我在这里阅读:Loading a trained Keras model and continue training

1 个答案:

答案 0 :(得分:1)

您只需使用

加载模型
from keras.models import load_model
model = load_model('model1.h5')