寻找两个节点之间的最短距离

时间:2019-03-11 09:33:52

标签: java matrix dijkstra

我找到了Dijkstra的算法并将其实施到我创建的图形中-该图形显示了我的本地地图 enter image description here

代码工作正常,但是我希望它显示它访问过的所有节点,以便从源节点到达位置Node。因此,例如:如果我将源节点设置为1(Banstead),并将位置节点设置为4(Whteleafe)-我希望它可能将其访问的节点存储在数组中,例如Array = {1,2,4}任何想法?我想将其放置在FXML文件上,并将节点作为椭圆并将其与线连接-但为此,我需要存储所访问节点的值。

package dijkstras;

public class Dijkstras {

    static class createGraph{
        int vertices;
        int matrix[][];

        public createGraph(int vertex){

            this.vertices = vertex;
            matrix = new int[vertex][vertex];
        }

        public void edge(int source, int destination, int weight){

            matrix[source][destination] = weight;
            matrix[destination][source] = weight;
        }

        int getMinVertex(boolean [] mst, int [] key){
            int minKey = Integer.MAX_VALUE;
            int vertex = -1;
            for (int i = 1; i < vertices; i++) {
                if(mst[i]==false && minKey>key[i]){
                    minKey = key[i];
                    vertex =i;
                }
            }

            return vertex;  
        }

        public void dijkstras(int sourceVertex){
            boolean[] spt = new boolean[vertices];
            int [] distance = new int[vertices];
            int infinity = Integer.MAX_VALUE;

            //setting all distances to infinity
            for(int i=1; i<vertices; i++){
                distance[i] = infinity;
            }

            //test for starting vertext = 1
            distance[sourceVertex] = 1;

            //create tree
            for(int i=1; i<vertices; i++){

                int vertexU = getMinVertex(spt, distance);

                spt[vertexU] = true;   
                //go through all possible paths adjacent to vertex
                for(int vertexV=1; vertexV<vertices; vertexV++){
                    //check if edge between Vu and Vv exists
                    if(matrix[vertexU][vertexV]>0){

                        //checks vertexV exists and if distance is not infinite
                        if(spt[vertexV]==false && matrix[vertexU][vertexV]!=infinity){

                            int newKey = matrix[vertexU][vertexV] + distance[vertexU];
                            if(newKey<distance[vertexV])
                                distance[vertexV] = newKey;
                        }
                    }
                }
            }

            System.out.println();      
            printDijkstras(sourceVertex, distance);
        }

        public void printDijkstras(int sourceVertex, int [] key){
            System.out.println("Dijkstra Algorithm:");
            int LocationOfChosenUser = 10;  
            System.out.println("Source Vertex: "+ sourceVertex + " to " +
              LocationOfChosenUser + " distance: " + (key[LocationOfChosenUser]-1));
        }
    }

    public static void graph() {
       int vertices = 18;
       createGraph graph = new createGraph(vertices);
       int sourceVertex = 8;
       //adding all nodes
       graph.edge(1,2,4);   graph.edge(1,17,3); 
       graph.edge(2,1,4);   graph.edge(2,4,4);   graph.edge(2,10,5); 
       graph.edge(3,4,1);   graph.edge(3,6,5);   graph.edge(3,5,2);
       graph.edge(4,2,4);   graph.edge(4,3,1);   graph.edge(4,5,2); 
       graph.edge(5,4,2);   graph.edge(5,3,2);   graph.edge(5,6,3);  graph.edge(5,9,4);  graph.edge(5,10,5); 
       graph.edge(6,3,5);   graph.edge(6,5,3);   graph.edge(6,7,2);  graph.edge(6,9,2);
       graph.edge(7,6,2);   graph.edge(7,8,5);   
       graph.edge(8,7,5);   graph.edge(8,9,4);   graph.edge(8,12,5);
       graph.edge(9,5,4);   graph.edge(9,8,4);   graph.edge(9,11,5); graph.edge(9,6,2); 
       graph.edge(10,2,5);  graph.edge(10,5,5);  graph.edge(10,13,1);graph.edge(10,14,3); graph.edge(10,17,6);
       graph.edge(11,9,5);  graph.edge(11,12,3); graph.edge(11,13,3);
       graph.edge(12,8,5);  graph.edge(12,11,3); graph.edge(12,15,4);
       graph.edge(13,11,3); graph.edge(13,10,1); graph.edge(13,14,2);
       graph.edge(14,10,3); graph.edge(14,13,2); graph.edge(14,16,6); graph.edge(14,15,6);
       graph.edge(15,12,4); graph.edge(15,14,5); graph.edge(15,16,9); 
       graph.edge(16,15,9); graph.edge(16,17,1); graph.edge(16,14,6);
       graph.edge(17,1,3);  graph.edge(17,16,1);

       graph.dijkstras(sourceVertex);
    }
    public static void main(String[] args){
        graph();
    }
}

如您所见,我将sourceVertex设置为8,将LocationVertex(LocationOfChosenUser)设置为10,输出看起来像这样:

 Dijkstra Algorithm:
Source Vertex: 8 to 10 distance: 12

2 个答案:

答案 0 :(得分:0)

最简单的方法是跟踪每个节点的前身。到达末端节点后,您可以回溯以找出您的来源。

添加初始化

int [] comeFrom = new int[vertices];

更改

if(newKey<distance[vertexV])
    distance[vertexV] = newKey;

if(newKey<distance[vertexV]) {
    distance[vertexV] = newKey;
    comeFrom[vertexV] = vertexU;
}

以及打印时

List<Integer> path = new ArrayList();
int pos = LocationOfChosenUser;

while(pos != sourceVertex) {
   path.add(pos);
   pos = comeFrom[pos];
}

for (int i=path.size()-1; i>=0; i--) {
   System.out.print(path.get(i));
   if (i > 0) System.out.print(" -> ");
}

答案 1 :(得分:0)

每次更新距离数组时,都需要跟踪到达该节点所采用的路径。这可以通过几种方法完成,我建议使用一个数组,该数组存储在距离数组中要实现距离的步骤。

distance[vertexV] = newKey;
lastStep[vertexV] = vertexU;

算法完成后,您便可以遍历从目标到起点的路径。基本上,您可以这样做:

int location = LocationOfChosenUser;
System.out.print(LocationOfChosenUser);
while (location != sourceVertex) {
    location = lastStep[LocationOfChosenUser];
    System.out.print(" <- " + location);
}
System.out.println();

此顺序为您提供相反的顺序(因此,<-箭头)。您将如何练习如何存储数字并反转数字。