我正在使用一个简单的数据集,出于可重复性的原因,我正在共享它here。
为了使我清楚自己在做什么-从第2列开始,我正在读取当前行并将其与上一行的值进行比较。如果更大,我会继续比较。如果当前值小于上一行的值,我想将当前值(较小)除以上一个值(较大)。因此,以下代码:
import numpy as np
import scipy.stats
import matplotlib.pyplot as plt
import seaborn as sns
protocols = {}
types = {"data_v": "data_v.csv"}
for protname, fname in types.items():
col_time,col_window = np.loadtxt(fname,delimiter=',').T
trailing_window = col_window[:-1] # "past" values at a given index
leading_window = col_window[1:] # "current values at a given index
decreasing_inds = np.where(leading_window < trailing_window)[0]
quotient = leading_window[decreasing_inds]/trailing_window[decreasing_inds]
quotient_times = col_time[decreasing_inds]
protocols[protname] = {
"col_time": col_time,
"col_window": col_window,
"quotient_times": quotient_times,
"quotient": quotient,
}
plt.figure(); plt.clf()
plt.plot(quotient_times, quotient, ".", label=protname, color="blue")
plt.ylim(0, 1.0001)
plt.title(protname)
plt.xlabel("quotient_times")
plt.ylabel("quotient")
plt.legend()
plt.show()
sns.distplot(quotient, hist=False, label=protname)
这给出了以下图表。
从图中可以看到
quotient_times
小于3时,quotient_times
为0,则商保持0.5。
大于3。我们如何将其拟合到S型函数中以绘制类似于以下内容的图?我想让权重随着quotient_times
的增加而迅速减少到零。