我想使用下面的代码来测量到实时视频流中检测到的对象(人)的距离。
链接到代码:https://github.com/JamzyWang/OD/blob/master/computeDistance.py
由于我已经检测到必须用作标记的人,所以我担心的是如何处理视频流中的标记。 在我的情况下,确实需要此功能的代码吗? 或者我应该从相机校准部分开始。
如果我确实从相机校准开始,在这种情况下对预加载的图像进行校准会很有用
也请在下面找到我一直在使用的人员检测代码:
# USAGE
# python real_time_object_detection_modified.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
LEDON = 18 # Connected to Physical pin 31 of Pi
#i=0
GPIO.setup(LEDON, GPIO.OUT) # LED Setup
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
#IGNORING CLASSES
IGNORE = set(["background", "aeroplane", "bicycle", "bird", "boat",
"bus", "car", "cat","chair", "cow", "diningtable",
"dog", "horse", "motorbike", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"])
#CLASSES = ["chair", "person","bicycle" , "cow"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(usePiCamera=True).start() # usePiCamera = True #
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
idx = int(detections[0, 0, i, 1])
# if the predicted class label is in the set of classes
# we want to ignore then skip the detection
if CLASSES[idx] in IGNORE:
continue
#compute the (x, y)-coordinates of
# the bounding box for the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# Blow LED if Person is detected in frame
if CLASSES[idx] == ("person"):
GPIO.output(LEDON, True) # LED ON
time.sleep(2)
GPIO.output(LEDON, False) # LED OFF
# show the output frame
Data = cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
######
#if Data == ("person"):
# GPIO.output(LEDON, True) # LED ON
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()