我希望代码添加数据框中不存在的新行。使用period_range重新索引时,我得到的是NaN值。我得到正确的period_range但为NaN,而不是保留列'A'的可用值。下面显示了代码示例:
我想问题出来了,因为使用了PeriodIndex和DatetimeIndex对象。
A
2018-10-31 14:08:26 NaN
2018-10-31 14:08:27 NaN
2018-10-31 14:08:28 NaN
2018-10-31 14:08:29 NaN
2018-10-31 14:08:30 NaN
import pandas as pd
data=[['2018-10-31 14:08:26', 1],
['2018-10-31 14:08:28', 2],
['2018-10-31 14:08:30', 3]]
df = pd.DataFrame(data=data, columns=['time','A'])
df.time = pd.to_datetime(df.time)
ts = df.time
idx = pd.period_range(min(ts), max(ts),freq='s')
df = df.set_index('time',drop=True)
df = df.reindex( idx )
答案 0 :(得分:2)
data = [['2018-10-31 14:08:26', 1],
['2018-10-31 14:08:28', 2],
['2018-10-31 14:08:30', 3]]
df = pd.DataFrame(data=data, columns=['time','A'])
df['time'] = pd.to_datetime(df['time'])
df.set_index('time').resample('S').asfreq()
输出
>>> df
A
time
2018-10-31 14:08:26 1.0
2018-10-31 14:08:27 NaN
2018-10-31 14:08:28 2.0
2018-10-31 14:08:29 NaN
2018-10-31 14:08:30 3.0
答案 1 :(得分:0)
需要将DatetimeIndex更改为PeriodIndex:
df = df.set_index('time',drop=True)
df.index=df.index.to_period('S')
df = df.reindex( idx )
A
2018-10-31 14:08:26 1.0
2018-10-31 14:08:27 NaN
2018-10-31 14:08:28 2.0
2018-10-31 14:08:29 NaN
2018-10-31 14:08:30 3.0