制作并填充PySpark数据框,其列为period_range

时间:2019-07-17 07:24:38

标签: python pandas dataframe pyspark

我有一个像这样的PySpark数据框

+----------+--------+----------+----------+
|id_       | p      |d1        |  d2      |
+----------+--------+----------+----------+
|  1       | A      |2018-09-26|2018-10-26|
|  2       | B      |2018-06-21|2018-07-19|
|  2       | B      |2018-08-13|2018-10-07|
|  2       | B      |2018-12-31|2019-02-27|
|  2       | B      |2019-05-28|2019-06-25|
|  3       |C       |2018-06-15|2018-07-13|
|  3       |C       |2018-08-15|2018-10-09|
|  3       |C       |2018-12-03|2019-03-12|
|  3       |C       |2019-05-10|2019-06-07|
| 4        | A      |2019-01-30|2019-03-01|
| 4        | A      |2019-05-30|2019-07-25|
| 5        |C       |2018-09-19|2018-10-17|
-------------------------------------------

由此,我想创建并填充另一个Pyspark数据框,该数据框具有n列,范围从min(d1)max(d2),每一列都是该范围内的日期。

我想用每行1和0填充此数据框。

对于第1行,我想用1填充min(第1行的d1)到max(第1行的d1)的所有天,并用0填充其余列。数据框中的所有行都类似。

我为此在熊猫上做这样的事情。

result = pd.DataFrame(data = 0, columns=pd.period_range(data['d1'].min(), data['d2'].max(), freq='D'), index=data.index)

for c in result.columns:
    result[c] = np.where((c.d2>=data.d1)&(c.d1 <= data.d2), 1, 0)

如何在PySpark中执行相同的操作?

2 个答案:

答案 0 :(得分:1)

这是一种方法(我只用了很少的行和较小的日期范围在此处打印输出)

  • 标识最小和最大日期(请注意,我从d1和最大格式d2中提取了min,但是如果您的数据的min d2小于min d1,则可以更改)
  • 使用日期作为结构字段来构造结构
  • 使用udf填充结构字段
  • 通过选择结构扩展结构。*
from pyspark.sql import SparkSession,Row
import pyspark.sql.functions as F
import pyspark.sql.types as T
import datetime

def fill_dates(d1, d2, start_date, no_of_date_cols):
    start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d')
    d1 = datetime.datetime.strptime(d1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(d2, '%Y-%m-%d')
    cols = {}
    for x in range(0, no_of_date_cols):
        col = (start_date + datetime.timedelta(days=x)).strftime('%Y-%m-%d')
        if datetime.datetime.strptime(col, '%Y-%m-%d') >= d1 and datetime.datetime.strptime(col, '%Y-%m-%d') <= d2:
            cols[col] = 1
        else:
            cols[col] = 0
    return cols

spark = SparkSession \
    .builder \
    .appName("Filling_Dates_Cols") \
    .config("master", "local") \
    .getOrCreate()

df = spark.createDataFrame([
                        [1, 'A', '2018-09-26', '2018-09-28'],
                        [2, 'B', '2018-09-20', '2018-09-22'],
                        [2, 'B', '2018-09-23', '2018-09-26'],
                        [3, 'C', '2018-09-15', '2018-09-26']
                        ], schema=['id', 'p', 'd1', 'd2'])

min_max_dates = df.select(
    F.min('d1').alias('min'),
    F.max('d2').alias('max')
).collect()[0]

min_date = min_max_dates[0]
max_date = min_max_dates[1]

d1 = datetime.datetime.strptime(min_date, '%Y-%m-%d')
d2 = datetime.datetime.strptime(max_date, '%Y-%m-%d')

no_of_date_cols = (d2 - d1).days + 1

schema = T.StructType()

for x in range(0, no_of_date_cols):
    new_col = (d1 + datetime.timedelta(days=x)).strftime('%Y-%m-%d')
    schema = schema.add(new_col, T.IntegerType())

fill_dates_udf = F.udf(fill_dates, schema)

df = df.withColumn(
    'dates',
    fill_dates_udf(F.col('d1'), F.col('d2'), F.lit(min_date), F.lit(no_of_date_cols))
)

df.select('id', 'p', 'd1', 'd2', 'dates.*').show()

这将导致

+---+---+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
| id|  p|        d1|        d2|2018-09-15|2018-09-16|2018-09-17|2018-09-18|2018-09-19|2018-09-20|2018-09-21|2018-09-22|2018-09-23|2018-09-24|2018-09-25|2018-09-26|2018-09-27|2018-09-28|
+---+---+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+
|  1|  A|2018-09-26|2018-09-28|         0|         0|         0|         0|         0|         0|         0|         0|         0|         0|         0|         1|         1|         1|
|  2|  B|2018-09-20|2018-09-22|         0|         0|         0|         0|         0|         1|         1|         1|         0|         0|         0|         0|         0|         0|
|  2|  B|2018-09-23|2018-09-26|         0|         0|         0|         0|         0|         0|         0|         0|         1|         1|         1|         1|         0|         0|
|  3|  C|2018-09-15|2018-09-26|         1|         1|         1|         1|         1|         1|         1|         1|         1|         1|         1|         1|         0|         0|
+---+---+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+----------+

答案 1 :(得分:1)

列表理解的一种方法:

更新:每个请求,将d1d2个字段从StringType调整为DateType。

设置数据,模块:

import pandas as pd
from pyspark.sql import functions as F

#... skip the code to initialize SparkSession spark and df

# if d1 and d2 were read as String, convert them to Date using the following.
# Or if the data were already imported with explicit schema or inferSchema=True when running read.csv(), then skip the following:
df = df.withColumn('d1', F.to_date('d1')) \
       .withColumn('d2', F.to_date('d2'))

>>> df.show()
+---+---+----------+----------+
|id_|  p|        d1|        d2|
+---+---+----------+----------+
|  1|  A|2018-09-26|2018-10-26|
|  2|  B|2018-06-21|2018-07-19|
|  2|  B|2018-08-13|2018-10-07|
|  2|  B|2018-12-31|2019-02-27|
|  2|  B|2019-05-28|2019-06-25|
|  3|  C|2018-06-15|2018-07-13|
|  3|  C|2018-08-15|2018-10-09|
|  3|  C|2018-12-03|2019-03-12|
|  3|  C|2019-05-10|2019-06-07|
|  4|  A|2019-01-30|2019-03-01|
|  4|  A|2019-05-30|2019-07-25|
|  5|  C|2018-09-19|2018-10-17|
+---+---+----------+----------+

>>> df.printSchema()
root
 |-- id_: string (nullable = true)
 |-- p: string (nullable = true)
 |-- d1: date (nullable = true)
 |-- d2: date (nullable = true)

获取start_date的min(d1)和end_date的max(d2):

d = df.select(F.min('d1').alias('start_date'), F.max('d2').alias('end_date')).first()

>>> d
Row(start_date=datetime.date(2018, 6, 15), end_date=datetime.date(2019, 7, 25))

获取日期列表并将其转换为日期

cols = [ c.to_timestamp().date() for c in pd.period_range(d.start_date, d.end_date, freq='D') ]

>>> cols
[datetime.date(2018, 6, 15),
 datetime.date(2018, 6, 16),
...
 datetime.date(2019, 7, 23),
 datetime.date(2019, 7, 24),
 datetime.date(2019, 7, 25)]

使用列表理解和when()函数

使用列表推导来迭代colsF.when(condition,1).otherwise(0)中的所有日期以设置列值,并为列名(别名)设置str(c)

result = df.select('id_', *[ F.when((df.d1 <= c)&(df.d2 >= c),1).otherwise(0).alias(str(c)) for c in cols ])

# check data in some columns
result.select('id_', str(d.start_date), '2019-01-01', str(d.end_date)).show()
+---+----------+----------+----------+
|id_|2018-06-15|2019-01-01|2019-07-25|
+---+----------+----------+----------+
|  1|         0|         0|         0|
|  2|         0|         0|         0|
|  2|         0|         0|         0|
|  2|         0|         1|         0|
|  2|         0|         0|         0|
|  3|         1|         0|         0|
|  3|         0|         0|         0|
|  3|         0|         1|         0|
|  3|         0|         0|         0|
|  4|         0|         0|         0|
|  4|         0|         0|         1|
|  5|         0|         0|         0|
+---+----------+----------+----------+