我正在尝试合并两个收益率数据集,我需要在到期日的最小差异上合并它们。由于我想计算商业贷款与到期日匹配的国库券之间的利差。
联接有效,但是我正在寻找更好的方法,也许使用fuzzy_join
?
library(data.table)
library(zoo)
library(tidyverse)
# Commercial loan issued in 2002 Q1 with a maturity of 119 months
dt.MWE <- structure(list(Issue.Year.Quarter = structure(2002, class = "yearqtr"), Maturity.Date = structure(15385, class = "Date")
, Issue.Months.to.Maturity = 119), row.names = c(NA, -1L), class = c("data.table", "data.frame"))
# Treasury Yields in 2002 Q1 with different maturities
dt.Yields <- structure(list(Year.Quarter = structure(c(2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002, 2002), class = "yearqtr"),
Maturity = c(12, 120, 1, 24, 240, 36, 360, 3, 60, 6, 84),
Avg.Treasury.Yield = c(2.32000001271566, 5.0766666730245, 1.73666663964589, 3.20333329836527, 5.74333333969116, 3.74999992052714,
5.42499995231629, 1.75666666030884, 4.46000003814697, 1.89666664600372, 4.8799999554952))
, row.names = c(NA, -11L), class = c("data.table", "data.frame"))
dt.join.result <- dt.MWE %>% inner_join(x = . , y = dt.Yields
, by = c(Issue.Year.Quarter = "Year.Quarter")) %>% mutate(.data = ., Dist.Maturity = abs(Issue.Months.to.Maturity - Maturity)) %>% group_by(.data = .,Issue.Year.Quarter )%>% mutate(.data = ., rank.Dist.Maturity = row_number(Dist.Maturity)) %>% dplyr::filter(rank.Dist.Maturity == 1) %>% data.table(.)
> Issue.Year.Quarter Maturity.Date Issue.Months.to.Maturity Maturity Avg.Treasury.Yield Dist.Maturity min.Dist.Maturity
1: 2002 Q1 2012-02-15 119 120 5.076667 1 1
答案 0 :(得分:4)
使用滚动连接的解决方案
由于某种原因,data.table在处理示例数据时给了我错误,因此我创建了副本dt1
和dt2
来使用。这些(可能)在您身边不需要...
library(data.table)
#create copies of the data.tables
dt1 <- copy( dt.MWE )
dt2 <- copy( dt.Yields )
#set keys to join on.
#the last key of each dt is using in the roll-action of the join
setkeyv( dt1, c("Issue.Year.Quarter", "Issue.Months.to.Maturity"))
setkeyv( dt2, c("Year.Quarter", "Maturity"))
#perform by reference (=fast!) rolling join to get the nearest match of the last (=second) key
dt1[, c("Maturity", "Avg.Treasury.Yield") := ( dt2[dt1, list( x.Maturity, Avg.Treasury.Yield) , roll = "nearest"])]
#calculate the absolute distance
dt1[, min.Dist.Maturity := abs( Issue.Months.to.Maturity - Maturity) ][]
# Issue.Year.Quarter Maturity.Date Issue.Months.to.Maturity Maturity Avg.Treasury.Yield min.Dist.Maturity
# 1: 2002 2012-02-15 119 120 5.076667 1