我有一系列的熊猫弦。我想对每行 的多个子字符串进行多次替换,请参见:
testdf = pd.Series([
'Mary went to school today',
'John went to hospital today'
])
to_sub = {
'Mary': 'Alice',
'school': 'hospital',
'today': 'yesterday',
'tal': 'zzz',
}
testdf = testdf.replace(to_sub, regex=True) # does not work (only replaces one instance per row)
print(testdf)
在上述情况下,所需的输出是:
Alice went to hospital yesterday.
John went to hospizzz yesterday.
请注意,第一行在字典中有三个替换项。
除了逐行执行(在for循环中)之外,我如何有效地执行此操作?
在其他问题中,我尝试了df.replace(...)
个其他答案,但是仅替换了一个子字符串,结果类似于:Alice went to school today
,其中school
和today
不是' t代替。
要注意的另一件事是,对于任何一行,替换应该一次全部进行。 (请参见第一行中的hospital
不会在秒时间内替换为hospizzz
,这可能是错误)。
答案 0 :(得分:2)
您可以使用:
#Borrowed from an external website
def multipleReplace(text, wordDict):
for key in wordDict:
text = text.replace(key, wordDict[key])
return text
print(testdf.apply(lambda x: multipleReplace(x,to_sub)))
0 Alice went to hospital yesterday
1 John went to hospital yesterday
编辑
使用字典中提到的以下注释:
to_sub = {
'Mary': 'Alice',
'school': 'hospital',
'today': 'yesterday',
'tal': 'zzz'
}
testdf.apply(lambda x: ' '.join([to_sub.get(i, i) for i in x.split()]))
输出:
0 Alice went to hospital yesterday
1 John went to hospital yesterday
答案 1 :(得分:0)
它在panadas 23.0版本中对我有用...
>>> testdf
0 Mary went to school today
1 John went to hospital today
dtype: object
>>> replace_values = {'Mary': 'Alice', 'school': 'hospital', 'today': 'yesterday'}
>>> testdf.replace(replace_values, regex=True)
0 Alice went to hospital yesterday
1 John went to hospital yesterday
dtype: object
包括带有替换..的部分字符串('tal':'zzz')运算符。
>>> replace_values = {'Mary': 'Alice', 'school': 'hospital', 'today': 'yesterday', 'tal': 'zzz'}
>>> testdf.replace(replace_values, regex=True)
0 Alice went to hospizzz yesterday
1 John went to hospizzz yesterday
dtype: object