我需要过滤pandas
数据框中的行,以便特定字符串列包含至少一个提供的子字符串列表。子字符串可能包含异常/正则表达式字符。该比较不应涉及正则表达式,并且不区分大小写。
例如:
lst = ['kdSj;af-!?', 'aBC+dsfa?\-', 'sdKaJg|dksaf-*']
我目前正在应用这样的面具:
mask = np.logical_or.reduce([df[col].str.contains(i, regex=False, case=False) for i in lst])
df = df[mask]
我的数据帧很大(约1个十亿行),lst
的长度为100.是否有更有效的方法?例如,如果找到lst
中的第一项,我们就不必测试该行的任何后续字符串。
答案 0 :(得分:36)
如果您坚持使用纯大熊猫,为了性能和实用性,我认为您应该 使用正则表达式执行此任务。但是,您需要首先正确地转义子字符串中的任何特殊字符,以确保它们按字面匹配(并且不用作正则表达式元字符)。
使用re.escape
很容易做到:
>>> import re
>>> esc_lst = [re.escape(s) for s in lst]
然后可以使用正则表达式管道|
连接这些转义的子字符串。可以针对字符串检查每个子字符串,直到匹配(或者它们都已经过测试)。
>>> pattern = '|'.join(esc_lst)
然后,屏蔽阶段成为通过行的单个低级循环:
df[col].str.contains(pattern, case=False)
这是一个简单的设置,可以获得性能感:
from random import randint, seed
seed(321)
# 100 substrings of 5 characters
lst = [''.join([chr(randint(0, 256)) for _ in range(5)]) for _ in range(100)]
# 50000 strings of 20 characters
strings = [''.join([chr(randint(0, 256)) for _ in range(20)]) for _ in range(50000)]
col = pd.Series(strings)
esc_lst = [re.escape(s) for s in lst]
pattern = '|'.join(esc_lst)
建议的方法大约需要1秒钟(对于100万行,可能需要20秒):
%timeit col.str.contains(pattern, case=False)
1 loop, best of 3: 981 ms per loop
使用相同的输入数据,问题中的方法大约需要5秒钟。
值得注意的是,这些时间是最糟糕的情况'从某种意义上说没有匹配(所以所有子串都被检查)。如果有匹配比时间会改善。
答案 1 :(得分:35)
您可以尝试使用Aho-Corasick algorithm。在一般情况下,O(n+m+p)
为n
是搜索字符串的长度,m
是搜索文本的长度,p
是输出匹配的数量。
Aho-Corasick算法often used可以在输入文本(大海捞针)中找到多个模式(针)。
pyahocorasick是围绕算法的C实现的Python包装器。
让我们比较它与某些替代方案的速度。以下是基准
显示using_aho_corasick
比原始方法快30倍以上
(在问题中显示)关于50K行DataFrame测试用例:
| | speed factor | ms per loop |
| | compared to orig | |
|--------------------+------------------+-------------|
| using_aho_corasick | 30.7x | 140 |
| using_regex | 2.7x | 1580 |
| orig | 1.0x | 4300 |
In [89]: %timeit using_ahocorasick(col, lst)
10 loops, best of 3: 140 ms per loop
In [88]: %timeit using_regex(col, lst)
1 loop, best of 3: 1.58 s per loop
In [91]: %timeit orig(col, lst)
1 loop, best of 3: 4.3 s per loop
此处用于基准测试的设置。它还验证输出是否与orig
返回的结果匹配:
import numpy as np
import random
import pandas as pd
import ahocorasick
import re
random.seed(321)
def orig(col, lst):
mask = np.logical_or.reduce([col.str.contains(i, regex=False, case=False)
for i in lst])
return mask
def using_regex(col, lst):
"""https://stackoverflow.com/a/48590850/190597 (Alex Riley)"""
esc_lst = [re.escape(s) for s in lst]
pattern = '|'.join(esc_lst)
mask = col.str.contains(pattern, case=False)
return mask
def using_ahocorasick(col, lst):
A = ahocorasick.Automaton(ahocorasick.STORE_INTS)
for word in lst:
A.add_word(word.lower())
A.make_automaton()
col = col.str.lower()
mask = col.apply(lambda x: bool(list(A.iter(x))))
return mask
N = 50000
# 100 substrings of 5 characters
lst = [''.join([chr(random.randint(0, 256)) for _ in range(5)]) for _ in range(100)]
# N strings of 20 characters
strings = [''.join([chr(random.randint(0, 256)) for _ in range(20)]) for _ in range(N)]
# make about 10% of the strings match a string from lst; this helps check that our method works
strings = [_ if random.randint(0, 99) < 10 else _+random.choice(lst) for _ in strings]
col = pd.Series(strings)
expected = orig(col, lst)
for name, result in [('using_regex', using_regex(col, lst)),
('using_ahocorasick', using_ahocorasick(col, lst))]:
status = 'pass' if np.allclose(expected, result) else 'fail'
print('{}: {}'.format(name, status))
答案 2 :(得分:0)
我想找到pd.Series
,v
的所有包含“ at”或“ Og”的元素。如果元素包含模式,则为1,否则为0。
re
:
import re
我的载体:
v=pd.Series(['cAt','dog','the rat','mouse','froG'])
[Out]:
0 cAt
1 dog
2 the rat
3 mouse
4 froG
我想找到v包含“ at”或“ Og”的所有元素。
也就是说,我可以将pattern
定义为:
pattern='at|Og'
因为我想要一个包含1s的向量(如果该项目包含模式),否则为0。
我创建一个长度与v相同的unit矢量
v_binary=[1]*len(v)
如果s
的一个元素包含True
或v
(如果其中不包含),我将得到布尔pattern
,即False
。 / p>
s=v.str.contains(pattern, flags=re.IGNORECASE, regex=True)
要获取二进制矢量,我将v_binary
* s
乘以
v_binary*s
[Out]
0 1
1 1
2 1
3 0
4 1