我正在通过一次传递两个图像来训练我的模型。一个带有前景,另一个不带有前景。
with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord=coord)
input_test,outputGT_test = build_img_pair(sess.run(test_batch))
for i in range(max_iteration):
input_train,outputGT_train = build_img_pair(sess.run(train_batch))
if(i<500):
train.run({input_image:input_train,gt:outputGT_train,learning_rate:0.001,is_train:False,batch_size:train_batch_size})
elif(i<1500):
train.run({input_image:input_train,gt:outputGT_train,learning_rate:0.0005,is_train:False,batch_size:train_batch_size})
else:
train.run({input_image:input_train,gt:outputGT_train,learning_rate:0.0001,is_train:False,batch_size:train_batch_size})
#sess.run(train,feed_dict={input_image:input_train,gt:outputGT_train})
# PRINT OUT A MESSAGE EVERY 100 STEPS
if i%10 == 0:
# Test the Train Model
print('Currently on step {}'.format(i))
print('Test Accuracy is:', end = " ")
matches = tf.equal(tf.argmax(convo_final,1),tf.argmax(gt,1))
acc = tf.reduce_mean(tf.cast(matches,tf.float32))
print(sess.run(acc,{input_image:input_test, gt:outputGT_test,learning_rate:0.001,is_train:False,
batch_size:test_batch_size}),end = " ")
print('train Accuracy is:', end = " ")
print(sess.run(acc,{input_image:input_train, gt:outputGT_train,learning_rate:0.001,is_train:False,
batch_size:train_batch_size}))
# test_loss = cross_entropy.eval({input_image:input_test, gt:outputGT_test,
# batch_size:test_batch_size,keep_prob:0.5})
#print(test_loss, end = " ")
print('\n')
if(i%500==0):
save_path = saver.save(sess, "data/model.ckpt")
print("Model saved in path: %s" % save_path)
coord.request_stop()
coord.join(threads)
tf.train.write_graph(sess.graph.as_graph_def(), 'graph/', 'Model.pb', as_text=True)