我有一个包含37个变量和50,000行的数据框。同时具有分类和数字特征。我想对数据框中的某些列执行归一化功能。
这是伪造的数据集:
diagnosis gender area age weight score compactness class
447 1 95.88 50 117.66 674.8 80 0
167 0 109.3 65 118.8 886.3 35.6 2
444 0 117.5 80 160.85 990 64.2 2
100 0 88.05 35 94.98 582.7 35.23 1
227 1 97.45 40 15.51 684.5 70 1
我只想对面积,重量,分数,紧凑度进行归一化处理。我该怎么办?顺便说一句,我发现了一种here的标准偏差方法,但这意味着对整个数据集进行规范化,其代码为:
# identify outliers with standard deviation
from numpy.random import seed
from numpy.random import randn
from numpy import mean
from numpy import std
# calculate summary statistics
data_mean, data_std = mean(data), std(data)
# identify outliers
cut_off = data_std * 3
lower, upper = data_mean - cut_off, data_mean + cut_off
# identify outliers
outliers = [x for x in data if x < lower or x > upper]
print('Identified outliers: %d' % len(outliers))
# remove outliers
outliers_removed = [x for x in data if x >= lower and x <= upper]
print('Non-outlier observations: %d' % len(outliers_removed))
我的问题是如何仅对数据帧中的某些列进行标准化?感谢您的提前帮助!
答案 0 :(得分:0)
我实际上有一个用于自动归一化的书面功能。如下:
n <-function(x){
d=dim(x)
c=colMeans(x)
xm=sapply(1:d[2],function(i){
x[,i]=x[,i]-c[i]
})
# xm is the x with removed means
v=var(xm) # variance matrix
xn=sapply(1:d[2],function(i){
xm[,i]=xm[,i]/sqrt(v[i,i])
})
xn
}
然后只需将此功能应用于所需的列即可。
tochange=c("age","weight","score")
df[,tochange]=n(df[,tochange])
> df
diagnosis gender area age weight score
[1,] 447 1 95.88 -0.2161373 0.3000106 -0.5282662
[2,] 167 0 109.30 0.5943775 0.3212536 0.7290858
[3,] 444 0 117.50 1.4048924 1.1048216 1.3455747
[4,] 100 0 88.05 -1.0266521 -0.1226130 -1.0757939
[5,] 227 1 97.45 -0.7564805 -1.6034728 -0.4706004
compactness class
[1,] 80.00 0
[2,] 35.60 2
[3,] 64.20 2
[4,] 35.23 1
[5,] 70.00 1